C++:哈希(闭散列、开散列)


哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素

    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

  • 搜索元素

    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表 (Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。 问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?(哈希冲突

哈希冲突

对于两个数据元素的关键字ki和 kj(i != j),有 ki != kj ,但有:Hash( ki ) == Hash( kj ),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。 发生哈希冲突该如何处理呢?

哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0 到m-1之间

  • 哈希函数计算出来的地址能均匀分布在整个空间中

  • 哈希函数应该比较简单

常见哈希函数

  1. 直接定制法

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B

  • 优点:简单、均匀
  • 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况
  1. 除留余数法

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

  1. 平方取中法

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为 4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址

平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  1. 折叠法

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。

折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  1. 随机数法

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。

通常应用于关键字长度不等时采用此法

  1. 数学分析法

设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:

在这里插入图片描述

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改 成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

哈希冲突解决

闭散列

也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。 那如何寻找下一个空位置呢?

  1. 线性探测

比如
在这里插入图片描述

现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

  • 插入

    通过哈希函数获取待插入元素在哈希表中的位置

    如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

在这里插入图片描述

  • 删除

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

    // 哈希表每个空间给个标记
	// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除 
	enum State{EMPTY, EXIST, DELETE};

什么时机增容,如何增容?

在这里插入图片描述

线性探测的实现
#pragma once

#include <map>
#include <vector>
using namespace std;

namespace dg {

enum State {
	EMPTY,
	EXIST,
	DELETE
};

// 整形数据不需要转化
class dealInt
{
public:
	int operator()(int n)
	{
		return n;
	}
};

// key为字符串类型,需要将其转化为整形
class dealString
{
public:
	int operator()(const string& n)
	{
		int sum = 0;
		int seed = 131;	// 131进制

		for (const char& c : n)
		{
			sum = sum * seed + c;
		}

		return sum & 0x7FFFFFFF;	// 为了保证得到的index的第一位为0,也就是为了得到一个正数。
	}
};

template<class K, class V, class SW = dealInt>
class hashTable
{
	struct elem
	{
		pair<K, V> m_val;
		State m_state;

		elem(const K& key = K(), const V& val = V(), State state = EMPTY) :
			m_val(key, val),
			m_state(state)
		{}
	};

	vector<elem> m_table;
	size_t m_size;

	static long long s_m_primeTable[30];
	int m_primePos;
public:
	hashTable(size_t capacity = s_m_primeTable[0]) :
		m_table(capacity),
		m_size(0),
		m_primePos(0)
	{}

	size_t capacity()
	{
		return m_table.size();
	}

private:
	int hashFunc(const K& key)
	{
		SW func;
		return func(key) % capacity();
	}

	void reserve()
	{
		vector<elem> tmp;

		m_table.swap(tmp);
		m_table.resize(s_m_primeTable[++m_primePos]);

		m_size = 0;
		for (auto& e : tmp)
		{
			if (e.m_state == EXIST)
			{
				insert(e.m_val);
			}
		}
	}

public:
	bool insert(const pair<K, V>& val)
	{
		if ((long long)size() * 100 / capacity() >= 75)
		{
			reserve();
		}

		int n = hashFunc(val.first);

		while (m_table[n].m_state == EXIST)
		{
			if (m_table[n].m_val.first == val.first)
			{
				return false;
			}

			n++;
			if (n == capacity())
			{
				n = 0;
			}
		}
		m_table[n].m_val = val;
		m_table[n].m_state = EXIST;

		m_size++;
		return true;
	}

	int find(const K& key)
	{
		int n = hashFunc(key);

		while (m_table[n].m_state != EMPTY)
		{
			if (m_table[n].m_state == EXIST && m_table[n].m_val.first == key)
			{
				return n;
			}
			n++;
			if (n == capacity())
			{
				n = 0;
			}
		}
		return -1;
	}

	bool erase(const K& key)
	{
		int ret = find(key);

		if (ret < 0)
		{
			return false;	// 不存在
		}
		else
		{
			m_table[ret].m_state = DELETE;
			m_size--;
		}
	}

	size_t size()
	{
		return m_size;
	}

	bool empty()
	{
		return m_size == 0;
	}

	// 交换两个表(容器)
	void Swap(hashTable<K, V>& ht)
	{
		m_table.swap(ht.m_table);

		size_t tmp;

		tmp = m_size;
		m_size = ht.m_size;
		ht.m_size = tmp;
	}
};

// 素数表(除留余数法,最好模一个素数)
template<class K, class V, class SW>
long long hashTable<K, V, SW>::s_m_primeTable[30] = {
		11,         23,         47,         89,        179,
	   353,        709,       1409,       2819,       5639,
	 11273,      22531,      45061,      90121,     180233,
	360457,     720899,    1441807,    2883593,    5767169,
  11534351,   23068673,   46137359,   92274737,  184549429,
 369098771,  738197549, 1476395029, 2952790016u, 4294967291u 
};

};

线性探测优点: 实现非常简单,

线性探测缺点: 一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据 了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。 如何缓解呢?

  1. 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就 是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为:Hi = (H0 + i2)% m, 或者: Hi= ( H0 - i2 )% m。其中:i = 1,2,3…, 是通过散列函数Hash(x)对元素的关键码 key 进行 计算得到的位置,m是表的大小。

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装 满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

在这里插入图片描述

在这里插入图片描述

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素

开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

开散列的实现
#pragma once
#include <vector>
using namespace std;

template<class T>
class HashBucketNode
{
	T m_val;
	HashBucketNode<T>* m_next;

	HashBucketNode(const T& val = T()) :
		m_val(val),
		m_next(nullptr)
	{}

	template<class T, class SW>
	friend class HashSet;
};

class dealInt
{
public:
	int operator()(int n)
	{
		return n;
	}
};

template<class T, class SW = dealInt>
class HashSet
{
	vector<HashBucketNode<T>*> m_data;
	size_t m_size;

	static long long s_m_primeTable[30];
	int m_primePos;
public:
	HashSet(size_t capacity = s_m_primeTable[0]) :
		m_data(capacity, nullptr),
		m_size(0),
		m_primePos(0)
	{}

private:
	int hashFunc(const T& key)
	{
		SW func;
		return func(key) % capacity();
	}

	void checkCapacity()
	{
		if (m_size == capacity())
		{
			int mcapa = capacity();
			vector<HashBucketNode<T>*> tmp(s_m_primeTable[++m_primePos], nullptr);
			m_data.swap(tmp);
			m_size = 0;

			int i;
			HashBucketNode<T>* cur;
			for (i = 0; i < mcapa; i++)
			{
				for (cur = tmp[i]; cur; cur = cur->m_next)
				{
					insert(cur->m_val);
				}
			}
		}
	}

public:
	bool insert(const T& val)
	{
		checkCapacity();

		int hashnum = hashFunc(val);
		HashBucketNode<T>* tmp;

		if (m_data[hashnum])
		{
			for (tmp = m_data[hashnum]; tmp; tmp = tmp->m_next)
			{
				if (tmp->m_val == val)
				{
					return false;
				}
			}
		}

		tmp = new HashBucketNode<T>(val);

		tmp->m_next = m_data[hashnum];
		m_data[hashnum] = tmp;

		m_size++;
		return true;
	}

	bool erase(const T& val)
	{
		int hashnum = hashFunc(val);
		HashBucketNode<T>* tmp;

		if (!m_data[hashnum])
		{
			return false;
		}

		if (m_data[hashnum]->m_val == val)
		{
			tmp = m_data[hashnum];
			m_data[hashnum] = tmp->m_next;
			delete tmp;

			m_size--;
			return true;
		}
		else
		{
			for (tmp = m_data[hashnum]; tmp->m_next; tmp = tmp->m_next)
			{
				if (tmp->m_next->m_val == val)
				{
					HashBucketNode<T>* cur;
					cur = tmp->m_next;
					tmp->m_next = cur->m_next;
					delete cur;

					m_size--;
					return true;
				}
			}
			return false;
		}
	}

	HashBucketNode<T>* find(const T& val)
	{
		int hashnum = hashFunc(val);

		HashBucketNode<T>* cur;
		for (cur = m_data[hashnum]; cur; cur = cur->m_next)
		{
			if (cur->m_val == val)
			{
				return cur;
			}
		}
		return nullptr;
	}

	void clear()
	{
		HashBucketNode<T>* tmp;
		for (auto& head : m_data)
		{
			while (head)
			{
				tmp = head;
				head = head->m_next;
				delete tmp;
			}
		}
		m_size = 0;
	}

	size_t capacity()
	{
		return s_m_primeTable[m_primePos];
	}
};

template<class T, class SW>
long long HashSet<T, SW>::s_m_primeTable[30] = {
	11, 23, 47, 89, 179,
	353, 709, 1409, 2819, 5639,
	11273, 22531, 45061, 90121, 180233,
	360457, 720899, 1441807, 2883593, 5767169,
	11534351, 23068673, 46137359, 92274737, 184549429,
	369098771, 738197549, 1476395029, 2952790016u, 4294967291u
};

开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大 量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.5,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。

unordered_map模拟实现(应用开散列)

main函数文件

#include "unordered_map.h"
#include <iostream>
using namespace std;

int main()
{
	dg::unordered_map<int, int> hb;

	hb[2] = 7;
	hb[4] = 6;
	hb[11] = 14;
	hb[7] = 9;
	hb[5] = 1;

	for (auto& e : hb)
	{
		cout << e.first << ' ' << e.second << endl;
	}

	return 0;
}

unordered_map头文件

#include "HashBucket.h"

namespace dg {

template <class K, class V, class HF = dealInt>
class unordered_map
{
	class KeyofValue
	{
	public:
		const K& operator()(const pair<K, V>& data)
		{
			return data.first;
		}
	};

	HashBucket<K, pair<K, V>, KeyofValue, HF> m_hb;

public:
	// typename 是为了识别类型
	typename typedef HashBucket<K, pair<K, V>, KeyofValue, HF>::iterator iterator;

	unordered_map() :
		m_hb()
	{}

	~unordered_map()
	{
		m_hb.~HashBucket();
	}
	iterator begin()
	{
		return m_hb.begin();
	}
	iterator end()
	{
		return m_hb.end();
	}
	iterator size()
	{
		return m_hb.size();
	}
	iterator find(const V& val)
	{
		return m_hb.find(val);
	}
	size_t count(const K& key)
	{
		return m_hb.count(key);
	}
	void clear()
	{
		return m_hb.clear();
	}
	bool empty()
	{
		return m_hb.empty();
	}
	pair<iterator, bool> insert(const pair<K, V> val)
	{
		return m_hb.insert(val);
	}
	V& operator[](const K& key)
	{
		pair<iterator, bool> ptmp = m_hb.insert(pair<K, V>(key, V()));
		iterator itmp = ptmp.first;
		return (*itmp).second;
	}
	const V& operator[](const K& key) const
	{
		return (*(m_hb.insert(pair<K, V>(key, V()))).first).second;
	}
};

};

哈希桶头文件

#pragma once
#include <vector>
using namespace std;

namespace dg {

	template<class T>
	class HashBucketNode
	{
		T m_val;
		HashBucketNode<T>* m_next;

		HashBucketNode(const T& val = T()) :
			m_val(val),
			m_next(nullptr)
		{}

		template<class K, class V, class KeyofValue, class HF>
		friend class HashBucket;
	};

	class dealInt
	{
	public:
		int operator()(int n)
		{
			return n;
		}
	};

	template<class K, class V, class KeyofValue, class HF = dealInt>
	class HashBucket
	{
		vector<HashBucketNode<V>*> m_data;
		size_t m_size;

		static long long s_m_primeTable[30];
		int m_primePos;
	public:
		HashBucket(size_t capacity = s_m_primeTable[0]) :
			m_data(capacity, nullptr),
			m_size(0),
			m_primePos(0)
		{}

		~HashBucket()
		{
			clear();
		}

		class iterator
		{
		public:
			HashBucket<K, V, KeyofValue, HF>* m_hb;
			HashBucketNode<V>* m_node;

			iterator(HashBucketNode<V>* node = nullptr,
				HashBucket<K, V, KeyofValue, HF>* hbpos = nullptr) :
				m_node(node),
				m_hb(hbpos)
			{}

			iterator(const iterator& it) :
				m_node(it.m_node),
				m_hb(it.m_hb)
			{}

			V& operator*()
			{
				return m_node->m_val;
			}

			V* operator->()
			{
				return &m_node->m_val;
			}

			// 前置++
			iterator operator++()
			{
				V val = m_node->m_val;
				m_node = m_node->m_next;
				if (!m_node)
				{
					int bucketno = m_hb->hashFunc(KeyofValue()(val)) + 1;
					for (; bucketno < m_hb->capacity(); bucketno++)
					{
						if (m_hb->m_data[bucketno])
						{
							m_node = m_hb->m_data[bucketno];
							break;
						}
					}
				}

				return *this;
			}

			iterator operator++(int)
			{
				HashBucket<K, V, KeyofValue, HF> tmp = *this;
				++(*this);
				return tmp;
			}

			bool operator==(const iterator& data) const
			{
				return m_node == data.m_node && m_hb == data.m_hb;
			}

			bool operator!=(const iterator& data) const
			{
				return m_node != data.m_node || m_hb != data.m_hb;
			}
		};


	private:
		int hashFunc(const K& key)
		{
			HF func;
			return func(key) % capacity();
		}

		void checkCapacity()
		{
			if (m_size == capacity())
			{
				int mcapa = capacity();
				vector<HashBucketNode<V>*> tmp(s_m_primeTable[++m_primePos], nullptr);
				m_data.swap(tmp);
				m_size = 0;

				int i;
				HashBucketNode<V>* cur;
				for (i = 0; i < mcapa; i++)
				{
					for (cur = tmp[i]; cur; cur = cur->m_next)
					{
						insert(cur->m_val);
					}
				}
			}
		}

	public:
		iterator begin()
		{
			int bucketno = 0;
			for (; bucketno < capacity(); bucketno++)
			{
				if (m_data[bucketno])
				{
					return iterator(m_data[bucketno], this);
				}
			}

			return iterator(nullptr, this);
		}

		iterator end()
		{
			return iterator(nullptr, this);
		}


		pair<iterator, bool> insert(const V& val)
		{
			checkCapacity();

			int hashnum = hashFunc(KeyofValue()(val));
			HashBucketNode<V>* tmp;

			if (m_data[hashnum])
			{
				for (tmp = m_data[hashnum]; tmp; tmp = tmp->m_next)
				{
					if (tmp->m_val == val)
					{
						pair<iterator, bool> pairtmp;
						pairtmp.first = end();
						pairtmp.second = false;
						return pairtmp;
					}
				}
			}

			tmp = new HashBucketNode<V>(val);

			tmp->m_next = m_data[hashnum];
			m_data[hashnum] = tmp;

			m_size++;

			pair<iterator, bool> pairtmp;
			iterator it(m_data[hashnum], this);
			pairtmp.first = it;
			pairtmp.second = true;
			return pairtmp;
		}

		iterator erase(const V& val)
		{
			int hashnum = hashFunc(KeyofValue()(val));
			HashBucketNode<V>* tmp;

			if (!m_data[hashnum])
			{
				return end();
			}

			if (m_data[hashnum]->m_val == val)
			{
				iterator res(m_data[hashnum], this);
				++res;

				tmp = m_data[hashnum];
				m_data[hashnum] = tmp->m_next;
				delete tmp;

				m_size--;
				return res;
			}
			else
			{
				for (tmp = m_data[hashnum]; tmp->m_next; tmp = tmp->m_next)
				{
					if (tmp->m_next->m_val == val)
					{
						iterator res(tmp->m_next, this);
						++res;

						HashBucketNode<V>* cur;
						cur = tmp->m_next;
						tmp->m_next = cur->m_next;
						delete cur;

						m_size--;
						return res;
					}
				}
				return end();
			}
		}

		iterator find(const V& val)
		{
			int hashnum = hashFunc(KeyofValue()(val));

			HashBucketNode<V>* cur;
			for (cur = m_data[hashnum]; cur; cur = cur->m_next)
			{
				if (cur->m_val == val)
				{
					return iterator(cur, this);
				}
			}
			return iterator(nullptr, this);
		}

		void clear()
		{
			HashBucketNode<V>* tmp;
			for (auto& head : m_data)
			{
				while (head)
				{
					tmp = head;
					head = head->m_next;
					delete tmp;
				}
			}
			m_size = 0;
		}

		size_t capacity()
		{
			return s_m_primeTable[m_primePos];
		}

		size_t size()
		{
			return m_size;
		}

		bool empty()
		{
			return m_size == 0;
		}

		size_t count(const K& kv)
		{
			int bucketno = hashFunc(kv);
			HashBucketNode<V>* cur;
			for (cur = m_data[bucketno]; cur; cur = cur->m_next)
			{
				if (KeyofValue()(cur->m_val) == kv)
				{
					return 1;
				}
			}
			return 0;
		}

		size_t bucketCount()
		{
			return capacity();
		}

		size_t bucketSize(size_t bucketno)
		{
			HashBucketNode<V>* cur;
			int count = 0;
			for (cur = m_data[bucketno]; cur; cur = cur->next)
			{
				count++;
			}
			return count;
		}
	};

	template<class K, class V, class KeyofValue, class HF>
	long long HashBucket<K, V, KeyofValue, HF>::s_m_primeTable[30] = {
		11, 23, 47, 89, 179,
		353, 709, 1409, 2819, 5639,
		11273, 22531, 45061, 90121, 180233,
		360457, 720899, 1441807, 2883593, 5767169,
		11534351, 23068673, 46137359, 92274737, 184549429,
		369098771, 738197549, 1476395029, 2952790016u, 4294967291u
	};

};

代码生成图
在这里插入图片描述

知识点习题:

  1. 下面哪个说法是错误的

A. 哈希表不可以用数组实现
B. 队列可以用数组实现
C. 二叉树可以用数组来实现
D. 栈可以用单项链表来实现

正确答案: A

  1. hash map 线程不安全的原因,错误的是

A. jbk1.7中,在多线程环境下,扩容时会造成数据丢失
B. jbk1.7中,在多线程环境下,扩容时会造成环形链
C. jbk1.8中,在多线程环境下,扩容时会造成环形链
D. jbk1.8中,在多线程环境下,会发生数据覆盖的情况

正确答案: C

答案解析:

HashMap的线程不安全体现在会造成死循环、数据丢失、数据覆盖这些问题。其中死循环和数据丢失是在JDK1.7中出现的问题,在JDK1.8中已经得到解决,然而1.8中仍会有数据覆盖这样的问题。(Java 方面)


如有不同见解,欢迎留言讨论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值