题目描述
请编写一个函数(允许增加子函数),计算n x m的棋盘格子(n为横向的格子数,m为竖向的格子数)沿着各自边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。
输入描述:
每组样例输入两个正整数n和m,用空格隔开。(1≤n,m≤8)
输出描述:
每组样例输出一行结果
示例1
输入
2
2
输出
6
思路
求取路径总数的题目,一般可以通过递归求解,对于复杂的问题,可以通过动态规划求解。
递归代码
#include<iostream>
using namespace std;
int pathNum(int n, int m)
{
if (n > 1 && m > 1)
//递归
return pathNum(n - 1, m) + pathNum(n, m - 1);
else if (((n >= 1) && (m == 1)) || ((n == 1) && (m >= 1)))
//终止条件
return n + m;
else
//格子为0时, 路径为0
return 0;
}
int main() {
int n, m;
while (cin >> n >> m)
{
cout << pathNum(n, m) << endl;
}
return 0;
}
动归代码
#include <iostream>
#include <vector>
using namespace std;
int main(){
int n, m;
while(cin >> n >> m){
vector<vector<int>> vv(n+1, vector<int>(m+1,1));
for(int i = 1; i <= n; ++i){
for(int j = 1; j <= m; ++j){
vv[i][j] = vv[i-1][j]+vv[i][j-1];
}
}
cout << vv[n][m] << endl;
}
return 0;
}
代码生成图:
如有不同见解,欢迎留言讨论~~