[每日一题]57:走方格的方案数

题目描述

请编写一个函数(允许增加子函数),计算n x m的棋盘格子(n为横向的格子数,m为竖向的格子数)沿着各自边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。

输入描述:

每组样例输入两个正整数n和m,用空格隔开。(1≤n,m≤8)

输出描述:

每组样例输出一行结果

示例1

输入
2
2

输出
6

思路

求取路径总数的题目,一般可以通过递归求解,对于复杂的问题,可以通过动态规划求解。

递归代码

#include<iostream>
using namespace std;

int pathNum(int n, int m)
{
	if (n > 1 && m > 1)
		//递归
		return pathNum(n - 1, m) + pathNum(n, m - 1);
	else if (((n >= 1) && (m == 1)) || ((n == 1) && (m >= 1))) 
		//终止条件
		return n + m;
	else
		//格子为0时, 路径为0
		return 0;
}
int main() {
	int n, m;
	while (cin >> n >> m)
	{
		cout << pathNum(n, m) << endl;
	}
	return 0;
}

动归代码

#include <iostream>
#include <vector>
using namespace std;

int main(){
    int n, m;
    while(cin >> n >> m){
        vector<vector<int>> vv(n+1, vector<int>(m+1,1));
        for(int i = 1; i <= n; ++i){
            for(int j = 1; j <= m; ++j){
                vv[i][j] = vv[i-1][j]+vv[i][j-1];
            }
        }
        cout << vv[n][m] << endl;
    }
    return 0;
}

代码生成图:
在这里插入图片描述


如有不同见解,欢迎留言讨论~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值