题目一
描述如下:
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
方法一:排序 + 双指针
- 首先将数组排序,然后 有一层for循环,i从下表0的地方开始,同时定一个下表left 定义在i+1的位置上,定义下表right 在数组结尾的位置上。
- 我们依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i] b = nums[left] c = nums[right]。
- 接下来我们如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下表就应该想左移动,这样才能让三数之和小一些。
- 如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了, left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
复杂度分析:
- 时间复杂度:O(n^2)
- 空间复杂度:O(logN)。忽略存储答案的空间,额外的排序的空间复杂度为 O(logN)。
代码实现:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for(int i = 0; i < nums.size(); i++){
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组
if (nums[0] > 0) return result;
// 正确去重方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
if (nums[i] + nums[left] + nums[right] > 0) {
right--;
} else if (nums[i] + nums[left] + nums[right] < 0) {
left++;
} else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
题目二
描述如下:
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
示例:
输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
方法一:排序 + 双指针
代码如下:
class Solution {
public:
int threeSumClosest(vector<int>& nums, int target) {
int res = nums[0] + nums[1] + nums[2];
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); ++i) {
if (i > 0 && nums[i] == nums[i - 1]) continue;
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
int sum = nums[i] + nums[left] + nums[right];
if (abs(sum - target) < abs(res - target)) {
res = sum;
}
if (sum > target) --right;
else if (sum < target) ++left;
else return res;
}
}
return res;
}
};