自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

翻译 感知器

线性分类器中感知器的定义及计算

2015-08-28 14:02:56 1059

原创 线性分类器:Fisher线性判别

我们知道,基于样本直接设计分类器需要三个基本要素:判别函数类型、分类器设计准则、寻优算法。这里我们讨论的线性判别函数类型为:g(x)=wTx+w0g(x)=w^Tx+w_0。采用Fisher准则

2015-08-28 10:43:55 8179

原创 直方图法、Kn近邻估计法、Parzen窗法

当需要估计的概率密度函数的形式未知,比如我们并不能知道样本的分布形式时,我们就无法用最大似然估计方法或贝叶斯估计方法来进行参数估计,而应该用非参数估计方法。这里就介绍三种非参数估计方法。

2015-08-24 14:54:55 16165 1

原创 贝叶斯估计

贝叶斯估计是概率密度函数估计中的一种主要的参数估计方法,其结果在很多情况下和最大似然估计方法相同。 本文详细介绍了贝叶斯估计的基本思想和计算步骤,并通过正态分布的贝叶斯估计举例,最后分析了贝叶斯估计相对于最大似然估计的优势。

2015-08-22 16:34:30 5981

原创 最大似然估计

最大似然估计是对概率密度函数的一种参数估计。就是说,样本的概率密度函数形式是已知的,但是函数中的某些或全部的参数未知,我们需要根据样本来估计这些参数的值。本文讲述了最大似然估计的基本原理和计算方法

2015-08-21 13:43:26 5365

原创 正态分布及其性质

正态分布也称为高斯分布。客观世界中很多变量都服从或近似服从正态分布,且正态分布具有很好的数学性质,所以正态分布也是人们研究最多的分布之一。本文对正态分布的性质做归纳总结,方便日后查找。

2015-08-20 13:43:41 73049 1

转载 欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl

2015-08-20 09:30:54 605

原创 最小风险贝叶斯决策

最小风险贝叶斯决策

2015-07-26 10:52:29 24215 2

原创 最小错误率贝叶斯决策

介绍了最小错误率贝叶斯决策的规则

2015-07-24 16:12:10 21606 1

原创 贝叶斯决策

本文讲述了以贝叶斯决策为核心的统计决策的基本思想和原理。其基本原理就是根据概率模型来估算后验概率,通过比较后验概率进行决策,而通过贝叶斯公式,后验概率的比较可以转化为类条件概率密度的比较。

2015-07-21 21:49:37 2907

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除