概率论&数理统计
文章平均质量分 79
Angel_Yuaner
这个作者很懒,什么都没留下…
展开
-
贝叶斯估计
贝叶斯估计是概率密度函数估计中的一种主要的参数估计方法,其结果在很多情况下和最大似然估计方法相同。 本文详细介绍了贝叶斯估计的基本思想和计算步骤,并通过正态分布的贝叶斯估计举例,最后分析了贝叶斯估计相对于最大似然估计的优势。原创 2015-08-22 16:34:30 · 5914 阅读 · 1 评论 -
直方图法、Kn近邻估计法、Parzen窗法
当需要估计的概率密度函数的形式未知,比如我们并不能知道样本的分布形式时,我们就无法用最大似然估计方法或贝叶斯估计方法来进行参数估计,而应该用非参数估计方法。这里就介绍三种非参数估计方法。原创 2015-08-24 14:54:55 · 15970 阅读 · 2 评论 -
线性分类器:Fisher线性判别
我们知道,基于样本直接设计分类器需要三个基本要素:判别函数类型、分类器设计准则、寻优算法。这里我们讨论的线性判别函数类型为:g(x)=wTx+w0g(x)=w^Tx+w_0。采用Fisher准则原创 2015-08-28 10:43:55 · 7960 阅读 · 0 评论 -
感知器
线性分类器中感知器的定义及计算翻译 2015-08-28 14:02:56 · 991 阅读 · 0 评论 -
最大似然估计
最大似然估计是对概率密度函数的一种参数估计。就是说,样本的概率密度函数形式是已知的,但是函数中的某些或全部的参数未知,我们需要根据样本来估计这些参数的值。本文讲述了最大似然估计的基本原理和计算方法原创 2015-08-21 13:43:26 · 5270 阅读 · 0 评论 -
正态分布及其性质
正态分布也称为高斯分布。客观世界中很多变量都服从或近似服从正态分布,且正态分布具有很好的数学性质,所以正态分布也是人们研究最多的分布之一。本文对正态分布的性质做归纳总结,方便日后查找。原创 2015-08-20 13:43:41 · 72288 阅读 · 1 评论