Tensorflow学习:基本文本分类

此笔记本(notebook)使用评论文本将影评分为*积极(positive)消极(nagetive)两类。这是一个二元(binary)*或者二分类问题,一种重要且应用广泛的机器学习问题。

准备工作

导入所需库

import tensorflow as tf
from tensorflow import keras

import numpy as np

导入数据集

imdb = keras.datasets.imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

参数num_words=10000保留了训练数据中最常出现的10,000个单词。为了保持数据规模的可管理性,低频词将被丢弃

分析数据

该数据集是经过预处理的;每个样本都是一个标识影评中词汇的证书数组,每个标签都是一个值为0或1的整数值,其中0代表消极评论,1代表积极评论

print(train_data[0])

评论文本被转换为整数值,其中每个整数代表词典中的一个单词。首条评论是这样的:

image-20210116181017275

电影评论可能具有不同的长度。以下代码显示了第一条和第二条评论的中单词数量。由于神经网络的输入必须是统一的长度,我们稍后需要解决这个问题。

len(train_data[0]), len(train_data[1])

image-20210116181244326

将整数转换回单词

了解如何将整数转换回文本对您可能是有帮助的。这里我们将创建一个辅助函数来查询一个包含了整数到字符串映射的字典对象:

# 一个映射单词到整数索引的字典
word_index = imdb.get_word_index()

# 保留第一个索引
word_index = {k:(v+3) for k,v in word_index.items()}
word_index["<PAD>"] = 0 
word_index["<START>"] = 1
word_index["<UNK>"] = 2
word_index["<UNUSED>"] = 3

reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])

def decode_review(text):
    return ' '.join([reverse_word_index.get(i, '?') for i in text] )

现在我们可以使用decode_review函数来显示首条评论的文本:

decode_review(train_data[0])

image-20210116201332921

数据处理

影评——即整数数组必须在输入神经网络之前转换为张良。这种转换可以通过以下两种方式来完成:

  • 将数组转换为表示单词出现与否的有0和1组成的向量,类似于one-hot编码。例如,序列[3,5]将转换为一个10,000维的向量,该向量除了索引为3和5的位置是1以外,其他都为0。然后,将其作为网络的首层——一个可以处理浮点型向量数据的稠密曾。不过,这种方式需要大量的内存,需要一个大小为num_words * num_reviews的矩阵
  • 或者,我们可以填充数组来保证输入数据具有相同的长度,然后创建一个大小为max_length*num_reviews的整型张量。我们可以使用能够处理此形状数据的嵌入层作为网络中的第一层。

在此,我们将使用第二种方法

由于电影评论长度必须相同,我们将使用pad_sequences函数来使长度标准化

train_data = keras.preprocessing.sequence.pad_sequences(train_data,
                                                        value=word_index["<PAD>"],
                                                        padding='post',
                                                        maxlen=256)
test_data = keras.preprocessing.sequence.pad_sequences(test_data,
                                                       value=word_index["<PAD>"],
                                                       padding='post',
                                                       maxlen=256)

查看样本的长度:

len(train_data[0]), len(train_data[1])

image-20210116214234372

检查一下首条评论(当前已经填充):

print(train_data[0])

image-20210116214426805

构建模型

神经网络由堆叠的层来构建,这需要从两个主要方面来进行体系结构决策:

  • 模型里有多少层?
  • 每个层里有多少隐藏单元(hidden units)?

在此样本中,输入数据包含一个单词索引的词组。要预测的标签为0或1。让我们来为该问题构建一个模型:

# 输入形状适用于电影评价的词汇数目(10,000词)
vocab_size=10000

model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))

model.summary()

image-20210116215821113

层按顺序堆叠以构建分类器:

  1. 第一层是嵌入(Embedding)层。该层采用整数编码的词汇表,并查找每个索引的嵌入向量(embedding vector)。这些向量是通过模型训练学习到的。向量向输出数组增加了一个维度。得到的维度为:(batch, sequence, embedding)
  2. 接下来,GlobalAveragePooling1D将通过对序列维度求平均值来为每个严格本返回一个定长输出向量。这允许模型以尽可能最简单的方式处理变长输入。
  3. 该定长输出向量通过一个又16个隐藏单元的全连接(Dense)层传输
  4. 最后一层与单个输出节点密集连接。使用Sigmoid激活函数,其函数值为介于0与1之间的腹地阿叔,表示概率或置信度

隐藏单元

上述模型在输入输出之间有两个中间层或“隐藏层”。输出(单元、结点或神经元)的数量即为层表示空间的维度。换句话说,是学习内部表示时网络所允许的自由度。

如果模型具有更多的隐藏单元(更高维度的表示空间)或更多层。泽可以学习到更复杂的表示。但是,这会使网络的计算成本更高,并且可能导致学习到不需要的模式——一些能够在训练数据上而不是测试数据上改善性能的模式。这被称为过拟合(overfitting)

损失函数与优化器

一个模型需要损失函数和优化器来进行训练。由于这是一个二分类问题且模型输出概率值(一个使用sigmoid激活函数的单—单元层),我们将使用binary_crossentropy损失函数

这不是损失函数的唯一选择,例如,您可以选择 mean_squared_error 。但是,一般来说 binary_crossentropy 更适合处理概率——它能够度量概率分布之间的“距离”,或者在我们的示例中,指的是度量 ground-truth 分布与预测值之间的“距离”。

稍后,当我们研究回归问题(例如,预测房价)时,我们将介绍如何使用另一种叫做均方误差的损失函数。

现在,配置模型来使用优化器和损失函数:

model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])

创建一个验证集

在训练时,我们想要检查模型在未见过的数据上的准确率(accuracy)。通过从原始训练数据中分离 10,000 个样本来创建一个验证集。(为什么现在不使用测试集?我们的目标是只使用训练数据来开发和调整模型,然后只使用一次测试数据来评估准确率(accuracy))。

x_val = train_data[:10000]
partial_x_train = train_data[10000:]

y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]

训练模型

以 512 个样本的 mini-batch 大小迭代 40 个 epoch 来训练模型。这是指对 x_trainy_train 张量中所有样本的的 40 次迭代。在训练过程中,监测来自验证集的 10,000 个样本上的损失值(loss)和准确率(accuracy):

history = model.fit(partial_x_train,
           partial_y_train,
           epochs=40,
           batch_size=512,
           validation_data=(x_val, y_val),
           verbose=1)

评估模型

我们来看一下模型的性能如何。将返回两个值。损失值(loss)(一个表示误差的数字,值越低越好)与准确率(accuracy)。

results = model.evaluate(test_data, test_labels, verbose=2)

print(results)

image-20210116225456931

创建一个准确率(accuracy)和损失值(loss)随时间变化的图标

model.fit() 返回一个 History 对象,该对象包含一个字典,其中包含训练阶段所发生的一切事件:

history_dict = history.history
history_dict.keys()

image-20210116225752597

有四个条目:在训练和验证期间,每个条目对应一个监控指标。我们可以使用这些条目来绘制训练与验证过程的损失值(loss)和准确率(accuracy),以便进行比较。

import matplotlib.pyplot as plt

acc = history_dict['accuracy']
val_acc = history_dict['val_accuracy']
loss = history_dict['loss']
val_loss = history_dict['val_loss']

epochs = range(1,len(acc)+1)

# "bo"代表"蓝点"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b代表"蓝色实线"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

image-20210116230705967

plt.clf() # 清除数字

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', lambel='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()

image-20210116231210207

在该图中,点代表训练损失值(loss)与准确率(accuracy),实线代表验证损失值(loss)与准确率(accuracy)。

注意训练损失值随每一个 epoch 下降而训练准确率(accuracy)随每一个 epoch 上升。这在使用梯度下降优化时是可预期的——理应在每次迭代中最小化期望值。

验证过程的损失值(loss)与准确率(accuracy)的情况却并非如此——它们似乎在 20 个 epoch 后达到峰值。这是过拟合的一个实例:模型在训练数据上的表现比在以前从未见过的数据上的表现要更好。在此之后,模型过度优化并学习特定于训练数据的表示,而不能够泛化到测试数据。

对于这种特殊情况,我们可以通过在 20 个左右的 epoch 后停止训练来避免过拟合。稍后,您将看到如何通过回调自动执行此操作。

完整代码

# 导入所需库
import tensorflow as tf
from tensorflow import keras

import numpy as np

# 导入数据集
imdb = keras.datasets.imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

# 分析数据
print(train_data[0])

len(train_data[0]), len(train_data[1])

# 将证书转换回单词
# 一个映射单词到整数索引的字典
word_index = imdb.get_word_index()

# 保留第一个索引
word_index = {k:(v+3) for k,v in word_index.items()}
word_index["<PAD>"] = 0 
word_index["<START>"] = 1
word_index["<UNK>"] = 2
word_index["<UNUSED>"] = 3

reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])

def decode_review(text):
    return ' '.join([reverse_word_index.get(i, '?') for i in text] )
    
decode_review(train_data[0])

# 数据处理
train_data = keras.preprocessing.sequence.pad_sequences(train_data,
                                                        value=word_index["<PAD>"],
                                                        padding='post',
                                                        maxlen=256)
test_data = keras.preprocessing.sequence.pad_sequences(test_data,
                                                       value=word_index["<PAD>"],
                                                       padding='post',
                                                       maxlen=256)

len(train_data[0]), len(train_data[1])
print(train_data[0])

# 构建模型
# 输入形状适用于电影评价的词汇数目(10,000词)
vocab_size=10000

model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))

model.summary()

# 损失函数与优化器
model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# 创建一个验证集
x_val = train_data[:10000]
partial_x_train = train_data[10000:]

y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]

# 训练模型
history = model.fit(partial_x_train,
           partial_y_train,
           epochs=40,
           batch_size=512,
           validation_data=(x_val, y_val),
           verbose=1)

# 评估模型
results = model.evaluate(test_data, test_labels, verbose=2)

print(results)

# 创建一个准确率(accuracy)和损失值(loss)随时间变化的图标
history_dict = history.history
history_dict.keys()

import matplotlib.pyplot as plt

acc = history_dict['accuracy']
val_acc = history_dict['val_accuracy']
loss = history_dict['loss']
val_loss = history_dict['val_loss']

epochs = range(1,len(acc)+1)

# "bo"代表"蓝点"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b代表"蓝色实线"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

plt.clf() # 清除数字

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', lambel='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadowCui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值