【动态规划(一)】动态规划基础

1.1 动态规划简介

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

动态规划要注意两点:1,状态;2,状态转移方程。

我不太愿意详细讲解下面三个问题的思考过程,一步步推导没有太大的必要,毕竟编程这种事情看一百遍,还不如自己在纸上画一画,然后敲敲代码。

希望能通过下面这三个小问题,来熟悉,学习动态规划

 

1.2 硬币问题

问题:如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元?

解析:

(1)凑够1元,11元硬币

(2)凑够2元,21元硬币

(3)凑够3元,31元硬币或者13元硬币,又1<3,所以选择一个3元硬币。以此类推至11元。

(4)其实是在之前的基础确定的。如,

2=1元(1个硬币)+1元(1个硬币);//2个硬币

3=2元(2个硬币)+1元(1个硬币)。

(5)用数组Coin存储硬币种类,数组Dp存储相应所需最小硬币个数,如Dp[m]=n,代表凑够m至少需要n个硬币。为方便使用,不使用Dp[0]

(6)构建方程:Dp[i]=Dp[i-Coin[j]]+1;//1代表需要Coin[j]这个硬币

源码(简单测试可用):Talk is cheap,show me the code!

int main()
{
	int coin[Count]={1,3,5};//硬币类型
	int Dp[Sum+1];//记录从0-11的银币数目
	
	//算法
	int i,j;
	//初始化,使每一个钱数为相应个数为1的硬币构成
	for(i=0;i<=Sum;i++)
	{
		Dp[i]=i;
	}//Dp[0]=0不使用
	for(i=1;i<=Sum;i++)
	{
		for(j=0;j<Count ;j++)
		{
			if(i>=coin[j]&&Dp[i-coin[j]]+1<Dp[i])
			{
				Dp[i]=Dp[i-coin[j]]+1;
			}
		}
	}
	//打印
	cout<<Dp[Sum]<<endl;
	for(i=1;i<=Sum;i++)
	{
		cout<<Dp[i]<<" ";
	}
}


1.3 数塔问题

问题:从顶部出发在每一个节点可以选择向左或者向右走,一直走到底层,

要求找出一条路径,使得路径上的数字之和最大.

解析:

(1)自底向上分析。先使用M二维数组存储该数塔,然后创建Dp二维数组,存储每个位置的和,如下图

(2)每次从本层结点的2个分支结点中选出最大值,

构建方程:Dp[i][j]=Max{Dp[i+1][j],Dp[i+1][j+1]}+Arry[i][j];

源码(简单测试可用):Talk is cheap,show me the code!

//数塔问题处理函数,自底向上寻找
void DataTower()
{
	int i,j;
	//初始化
	for (i=0;i<Max;i++)
	{
		Dp[Max-1][i]=M[Max-1][i];//复制图最后一列
	}

	//计算
	for(i=Max-2;i>=0;i--)//最后一行已经赋值,还有Max-1行没有赋值
	{
		for(j=0;j<=i;j++)//第i行就有i列
		{
			//找出左右子节点最大的一个
			if(Dp[i+1][j]>Dp[i+1][j+1])
				Dp[i][j]=Dp[i+1][j]+M[i][j];
			else
				Dp[i][j]=Dp[i+1][j+1]+M[i][j];
		}
	}
}

打印,来源网上

//由Dp数组,打印最终结果
void print ()
{
	cout << "最大路径和:" << Dp[0][0] << '\n';
    int node_value;
    // 首先输出塔顶元素
    cout << "最大路径:" << M[0][0];
    int j = 0;
    for (int i = 1; i < Max; ++i)
    {
        node_value = Dp[i - 1][j] - M[i - 1][j];
        if (node_value == Dp[i][j + 1]) ++j;
        cout << "->" << M[i][j];
    }
    cout << endl;
}


1.4 最长非降子程序

问题:534867

求该数列的最长非降子序

解析:

(1)假设该序列只有一个”5”,那么最长为1

(2)“5,3”,转换来看“51),31)”,最长为1

(3)“5,3,4”,转换“51),31),42)”,因为最长非降序列为“3,4”,最长为2

(4)不一一列举,看看这条更清楚一些,51,31,42,83,63)”。“6”的确定是因为“4”,“3,4,6”在“4”对应的长度上加1,为3

(5)创建数组Dp,构建方程:Dp[i]=Dp[j]+1;

判断条件是A[i]>=A[j]

源码(简单测试可用):Talk is cheap,show me the code!

本人依据以上思路写的。

void Long01(int *A)
{
	int Dp[Max];//记录i位置对应的相应的非降子序的个数
	int i,j;
	Dp[0]=1;//第一个元素为肯定为1
	for (i=1;i<Max;i++)
	{
		if(A[i]>=A[i-1])
		{
			Dp[i]=Dp[i-1]+1;
		}
		else
		{
			for(j=i-1;j>=0;j--)
			{
				if(A[i]>A[j])
				{
					Dp[i]=Dp[j]+1;
					break;
				}
			}
			if(j<0)
			{
				Dp[i]=1;
			}
		}
	}
}

网上跟上述思路一致,但是更简洁

void  Long02(int *A)
{
	int d[Max];  
    int len = 1;  
    for(int i=0; i<Max; ++i){  
        d[i] = 1;  
        for(int j=0; j<i; ++j)  //循环i前面的几个元素
            if(A[j]<=A[i] && d[j]+1>d[i])  //i前可能存在多个小于i的值,取最大者,个人觉得此处倒着找好一些
                d[i] = d[j] + 1;  
        if(d[i]>len) len = d[i];  
    }  
    cout<< len<<endl;  
}



1.5 总结 

比较简单,如果有错误的地方,烦请大牛指教,上述的代码是在Vs2010中编写的,如果有乱码问题,可以在:https://github.com/AngryCaveman/C-Struct.git中查看下载“018番外”文件夹下本人的源码,其他文件夹中项目是在Vs2013中编写的。




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值