基本模板
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
经典例题
AcWing 847. 图中点的层次
给定一个n个点m条边的有向图,图中可能存在重边和自环。
所有边的长度都是1,点的编号为1~n。
请你求出1号点到n号点的最短距离,如果从1号点无法走到n号点,输出-1。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含两个整数a和b,表示存在一条从a走到b的长度为1的边。
输出格式
输出一个整数,表示1号点到n号点的最短距离。
数据范围
1≤n,m≤105
输入样例:
4 5
1 2
2 3
3 4
1 3
1 4
输出样例:
1
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];//存储每个节点离起点的距离 d[1]=0
int q[N];//存储层次遍历序列 0号节点是编号为1的节点
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
int bfs()
{
int hh = 0, tt = 0;
q[0] = 1;//0号节点是编号为1的节点
memset(d, -1, sizeof d);
d[1] = 0;//存储每个节点离起点的距离
//当我们的队列不为空时
while(hh <= tt)
{
//取出队列头部节点
int t = q[hh++];
for(int i = h[t] ; i != -1; i = ne[i])//遍历t节点的每一个邻边
{
int j = e[i];
if(d[j] == -1)//如果j没有被扩展过
{
d[j] = d[t] + 1;//d[j]存储j节点离起点的距离,并标记为访问过
q[++tt] = j;//将j点加到队列里
}
}
}
return d[n];
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m;i++)
{
int a, b;
cin >> a >> b;
add(a, b);
}
cout << bfs() << endl;
return 0;
}