Lindley equation

In probability theory, the Lindley equation, Lindley recursion or Lindley processes is a discrete-time stochastic process A n A_n An where n n n takes integer values and:

A n + 1 = m a x ( 0 , A n + B n ) A_{n + 1} = max(0, A_n + B_n) An+1=max(0,An+Bn).
Processes of this form can be used to describe the waiting time of customers in a queue or evolution of a queue length over time. The idea was first proposed in the discussion following Kendall’s 1951 paper.

Waiting times

In Dennis Lindley’s first paper on the subject the equation is used to describe waiting times experienced by customers in a queue with the First-In First-Out (FIFO) discipline.

W n + 1 = m a x ( 0 , W n + U n ) W_{n + 1} = max(0,W_n + U_n) Wn+1=max(0,Wn+Un)
where

T n T_n Tn is the time between the n n nth and ( n + 1 ) (n+1) (n+1)th arrivals,
S n S_n Sn is the service time of the n n nth customer, and
U n = S n − T n U_n = S_n − T_n Un=SnTn
W n W_n Wn is the waiting time of the n n nth customer.
The first customer does not need to wait so W 1 = 0 W_1 = 0 W1=0. Subsequent customers will have to wait if they arrive at a time before the previous customer has been served.

Queue lengths

The evolution of the queue length process can also be written in the form of a Lindley equation.

Integral equation

Lindley’s integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue.

F ( x ) = ∫ 0 − ∞ K ( x − y ) F ( d y ) x ≥ 0 F(x)=\int _{0^{-}}^{\infty }K(x-y)F({\text{d}}y)\quad x\geq 0 F(x)=0K(xy)F(dy)x0
Where K ( x ) K(x) K(x) is the distribution function of the random variable denoting the difference between the ( k − 1 ) (k - 1) (k1)th customer’s arrival and the inter-arrival time between ( k − 1 ) (k - 1) (k1)th and k k kth customers. The Wiener–Hopf method can be used to solve this expression.

https://en.wikipedia.org/wiki/Lindley_equation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值