RSA
Anne033
本博客有较多转载内容,目的是为自己学习备查,已尽量注明转载地址,若有侵权,请告知,必删。
展开
-
图之DFS与BFS的复杂度分析
1. BFS的复杂度分析vvv为图的顶点数,EEE为边数。BFS是一种借用队列来存储的过程,分层查找,优先考虑距离出发点近的点。无论是在邻接表还是邻接矩阵中存储,都需要借助一个辅助队列,vvv个顶点均需入队,最坏的情况下,空间复杂度为O(v)O(v)O(v)。邻接表形式存储时,每个顶点均需搜索一次,时间复杂度T1=O(v)T1=O(v)T1=O(v),从一个顶点开始搜索时,开始搜索,访问未被访问过的节点。最坏的情况下,每个顶点至少访问一次,每条边至少访问1次,这是因为在搜索的过程中,若某结点向下搜索时转载 2020-10-13 15:39:21 · 8157 阅读 · 0 评论 -
3SAT问题
3-Satisfiability (3Sat)https://samjjx.github.io/2019/03/14/3sat2ds/转载 2020-09-29 10:09:19 · 2620 阅读 · 0 评论 -
斯坦纳点/树、泰森多边形
斯坦纳点斯坦纳点别名正等角中心、费尔马点、斯坦纳点在三角形的三边各向其外侧作等边三角形,这三个等边三角形的外接圆交于一点T,该点T即称为托里拆利点(Torricelli’s point ),而三个等边三角形的外接圆称为托里拆利圆。在一定条件下,托里拆利点和正等角中心、费尔马点等是一回事。托里拆利点是由意大利物理学家托里拆利发现的。该问题是费马(1601-1665)作为“求一点,使它至一三角形三顶点的距离和最小"这一著名的极值问题而向意大利物理学家托里拆利(1608-1647)提出,并为托里拆利所解决的,原创 2020-08-04 16:50:29 · 4696 阅读 · 0 评论 -
最小生成树、最短路径树
最小生成树在图论中,无向图 G 的生成树(英语:Spanning Tree)是具有 G 的全部顶点,但边数最少的连通子图。[1]一个图的生成树可能有多个。带权图的生成树中,总权重最小的称为最小生成树。它在实际中有什么应用呢?比如说有N个城市需要建立互联的通信网路,如何使得需要铺设的通信电缆的总长度最小呢?这就需要用到最小生成树的思想了。求取最小生成树的算法:Prim算法原理:1)以某一个点开始,寻找当前该点可以访问的所有的边;2)在已经寻找的边中发现最小边,这个边必须有一个点还没有访问过,转载 2020-09-21 10:19:40 · 8634 阅读 · 0 评论