详解残差网络

在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题

  1. 计算资源的消耗
  2. 模型容易过拟合
  3. 梯度消失/梯度爆炸问题的产生

问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;问题2的过拟合通过采集海量数据,并配合Dropout正则化等方法也可以有效避免;问题3通过Batch Normalization也可以避免。貌似我们只要无脑的增加网络的层数,我们就能从此获益,但实验数据给了我们当头一棒。

作者发现,随着网络层数的增加,网络发生了退化(degradation)的现象:随着网络层数的增多,训练集loss逐渐下降,然后趋于饱和,当你再增加网络深度的话,训练集loss反而会增大。注意这并不是过拟合,因为在过拟合中训练loss是一直减小的。

当网络退化时,浅层网络能够达到比深层网络更好的训练效果,这时如果我们把低层的特征传到高层,那么效果应该至少不比浅层的网络效果差,或者说如果一个VGG-100网络在第98层使用的是和VGG-16第14层一模一样的特征,那么VGG-100的效果应该会和VGG-16的效果相同。所以,我们可以在VGG-100的98层和14层之间添加一条直接映射(Identity Mapping)来达到此效果。

从信息论的角度讲,由于DPI(数据处理不等式)的存在,在前向传输的过程中,随着层数的加深,Feature Map包含的图像信息会逐层减少,而ResNet的直接映射的加入,保证了 L+1层的网络一定比L层包含更多的图像信息。

基于这种使用直接映射来连接网络不同层直接的思想,残差网络应运而生。

1. 残差网络

1.1 残差块

残差连接解决了困扰所有大规模深度学习模型的两个共性问题:
 
梯度消失和表示瓶颈。通常来说,向任何多于 10 层的模型中添加残差连接,都可能会有所帮助。
 

残差网络是由一系列残差块组成的(图1)。一个残差块可以用表示为:

图1:残差块

图2:1*1残差块

一般,这种版本的残差块叫做resnet_v1,keras代码实现如下:

def res_block_v1(x, input_filter, output_filter):
    res_x = Conv2D(kernel_size=(3,3), filters=output_filter, strides=1, padding='same')(x)
    res_x = BatchNormalization()(res_x)
    res_x = Activation('relu')(res_x)
    res_x = Conv2D(kernel_size=(3,3), filters=output_filter, strides=1, padding='same')(res_x)
    res_x = BatchNormalization()(res_x)
    if input_filter == output_filter:
        identity = x
    else: #需要升维或者降维
        identity = Conv2D(kernel_size=(1,1), filters=output_filter, strides=1, padding='same')(x)
    x = keras.layers.add([identity, res_x])
    output = Activation('relu')(x)
    return output

1.2 残差网络

残差网络的搭建分为两步:

  1. 使用VGG公式搭建Plain VGG网络
  2. 在Plain VGG的卷积网络之间插入Identity Mapping,注意需要升维或者降维的时候加入 1X1卷积。

在实现过程中,一般是直接stack残差块的方式。

def resnet_v1(x):
    x = Conv2D(kernel_size=(3,3), filters=16, strides=1, padding='same', activation='relu')(x)
    x = res_block_v1(x, 16, 16)
    x = res_block_v1(x, 16, 32)
    x = Flatten()(x)
    outputs = Dense(10, activation='softmax', kernel_initializer='he_normal')(x)
    return outputs

1.3 为什么叫残差网络

2. 残差网络的背后原理

通过分析残差网络的正向和反向两个过程,我们发现,当残差块满足上面两个假设时,信息可以非常畅通的在高层和低层之间相互传导,说明这两个假设是让残差网络可以训练深度模型的充分条件。那么这两个假设是必要条件吗?

2.1 直接映射是最好的选择

图3:直接映射的变异模型

图4:变异模型(均为110层)在Cifar10数据集上的表现

从图4的实验结果中我们可以看出,在所有的变异模型中,依旧是直接映射的效果最好。下面我们对图3中的各种变异模型的分析

2.2 激活函数的位置

[1] 提出的残差块可以详细展开如图5.a,即在卷积之后使用了BN做归一化,然后在和直接映射单位加之后使用了ReLU作为激活函数。

图5:激活函数在残差网络中的使用

上面公式反应到网络里即将激活函数移到残差部分使用,即图5.c,这种在卷积之后使用激活函数的方法叫做post-activation。然后,作者通过调整ReLU和BN的使用位置得到了几个变种,即5.d中的ReLU-only pre-activation和5.d中的 full pre-activation。作者通过对照试验对比了这几种变异模型,结果见图6。

图6:基于激活函数位置的变异模型在Cifar10上的实验结果

而实验结果也表明将激活函数移动到残差部分可以提高模型的精度。

该网络一般就在resnet_v2,keras实现如下:

def res_block_v2(x, input_filter, output_filter):
    res_x = BatchNormalization()(x)
    res_x = Activation('relu')(res_x)
    res_x = Conv2D(kernel_size=(3,3), filters=output_filter, strides=1, padding='same')(res_x)
    res_x = BatchNormalization()(res_x)
    res_x = Activation('relu')(res_x)
    res_x = Conv2D(kernel_size=(3,3), filters=output_filter, strides=1, padding='same')(res_x)
    if input_filter == output_filter:
        identity = x
    else: #需要升维或者降维
        identity = Conv2D(kernel_size=(1,1), filters=output_filter, strides=1, padding='same')(x)
    output= keras.layers.add([identity, res_x])
    return output

def resnet_v2(x):
    x = Conv2D(kernel_size=(3,3), filters=16 , strides=1, padding='same', activation='relu')(x)
    x = res_block_v2(x, 16, 16)
    x = res_block_v2(x, 16, 32)
    x = BatchNormalization()(x)
    y = Flatten()(x)
    outputs = Dense(10, activation='softmax', kernel_initializer='he_normal')(y)
    return outputs

3.残差网络与模型集成

Andreas Veit等人的论文[3]指出残差网络可以从模型集成的角度理解。如图7所示,对于一个3层的残差网络可以展开成一棵含有8个节点的二叉树,而最终的输出便是这8个节点的集成。而他们的实验也验证了这一点,随机删除残差网络的一些节点网络的性能变化较为平滑,而对于VGG等stack到一起的网络来说,随机删除一些节点后,网络的输出将完全随机。

图7:残差网络展开成二叉树

Reference

[1] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

[2] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]//European Conference on Computer Vision. Springer, Cham, 2016: 630-645.

[3] Veit A, Wilber M J, Belongie S. Residual networks behave like ensembles of relatively shallow networks[C]//Advances in Neural Information Processing Systems. 2016: 550-558.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值