ResNet在《Deep Residual Learning for Image Recognition》论文中提出,是在CVPR 2016发表的一种影响深远的网络模型,由何凯明大神团队提出来,在ImageNet的分类比赛上将网络深度直接提高到了152层,前一年夺冠的VGG只有19层。ImageNet的目标检测以碾压的优势成功夺得了当年识别和目标检测的冠军,COCO数据集的目标检测和图像分割比赛上同样碾压夺冠,可以说ResNet的出现对深度神经网络来说具有重大的历史意义。论文下载地址:地址,有兴趣的小伙伴可以阅读原文。
一、没有出现ResNet之前
神经网络越深的卷积层理论上可以提取更多的图像特征,但是事实结果并不是,如下图:
该图是作则在CIFAR-10上做的测试数据;左侧是训练接结果,右侧是测试集结果
从图中可以看出错误率在20层时候是最低的,添加