承接上文对CNN的介绍[学习笔记P20-CNN],下面来看看一些细节梳理:
CNN框架:

池化层(pooling layer)也叫做子采样层(subsampling layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。

为什么conv-layer之后需要加pooling_layer?
卷积层【局部连接和权重共享】虽然可以显著减少网络中连接的数量,但特征映射组中的神经元个数并没有显著减少。如果后面接一个分类器,分类器的输入维数依然很高,很容易过拟合。为了解决这个问题,可以再卷积层之后加上一个pooling layer,从而降低特征维数,避免过拟合。

Pooling是指对每个区域进行下采样(Down Sampling)得到一个

最低0.47元/天 解锁文章
9万+

被折叠的 条评论
为什么被折叠?



