一、什么是八数码难题
二、解决问题的大致流程
1.用“树”来进行穷举,理解问题的整个过程
这里使用了宽度优先搜索树,对每一结点都要找出它的孩子结点
2.解决该问题的大致流程图
3、使用的数据结构
如上图所示,各个状态用一维数组来表示,空格用零来表示,使用的队列存储各个状态来进行遍历,各状态的子状态要用动态数组来存储;
4、代码编写的过程
1、定义各个子状态
用类来实现各个子状态,对各个子状态进行的操作分别有:输入数据、按照九宫格来展示、生成子状态、判定与终态是否相同
(1)在头文件中进行类的定义
#pragma once
#ifndef STATE_H
#define STATE_H
#include <vector>
#define BD_SIZE 3
using namespace std;
class State
{
public:
State();
void display();
void generateChildren(vector<State>& result);
bool operator ==(State& rv);
private:
int m_data[BD_SIZE * BD_SIZE];
};
#endif
(2)数据的输入与展示
State::State()//按照一维数组进行输出
{
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
cin >> m_data[i];
}
}
void State::display()
{
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
if (i % BD_SIZE == BD_SIZE - 1)
cout << m_data[i] << endl;
else
cout << m_data[i] << " ";
}
}
(3)边界条件的判定
void State::generateChildren(vector<State> &result)
{
int iZero = -1;
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
if (m_data[i] == 0)
iZero = i;
}
//向上移动
if (iZero >= BD_SIZE)
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero - BD_SIZE];
child.m_data[iZero - BD_SIZE] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
//向下移动
if (iZero<BD_SIZE*(BD_SIZE-1))
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero + BD_SIZE];
child.m_data[iZero + BD_SIZE] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
//向左移动
if (iZero%BD_SIZE!=0)
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero-1];
child.m_data[iZero -1] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
//向右移动
if (iZero % BD_SIZE != BD_SIZE-1)
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero + 1];
child.m_data[iZero + 1] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
}
(4)重载操作符判定是否相同
这一部除了可以重载操作符,还可以定义函数来实现,下面的代码是使用了重载操作符,参数为另一个状态,这里的输入应为终态;
bool State::operator==(State& rv)
{
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
if (m_data[i] != rv.m_data[i])
return false;
}
return true;
}
2、定义各个结点
(1)结点的构造函数定义
输出路径时,从子状态要访问父结点,所以在构建每一个结点时,一定要包括指向父结点的指针
定义的结点类如下
class Node
{
public:
Node(State &state);
Node(State& state,Node* m_pParent);
State GetState() { return m_state; }
void PrintPath();
private:
State m_state;
Node* m_pParent;
};
构造函数的实现如下
Node::Node(State &state):m_state(state),m_pParent(NULL)
{
}
Node::Node(State& state, Node* pParent) :m_state(state), m_pParent(pParent)
{
}
(2)输出具体的路径
这一步是该程序的重点,将其定义为结点类“Node”的函数,由终态对应的子结点出发,由下到上,逐层访问父结点,并将父结点从上到下依次输出,可以利用递归来实现,因为递归使用了栈这个数据结构,可以实现将路径从上往下输出。
void Node::PrintPath()
{
if (m_pParent)//根结点的父节点不存在
{
m_pParent->PrintPath();
m_state.display();
}
else
{
m_state.display();//展示根结点
}
cout << endl;
}
3、主函数的具体实现
(1)输入初态和终态
cout << "请输入初态:" << endl;
State Ss;
Ss.display();
cout << "请输入终态:" << endl;
State Sd;
Sd.display();
(2)输出路径
if (Ss.operator==(Sd))
{
cout << "初态=终态!" << endl;
return 0;
}
else//不相同
{
Node node_s(Ss);
list<Node*> queue;
queue.push_back(&node_s);//将初状态入队
while (queue.size())
{
Node* pCurrent = queue.front();
queue.pop_front();//删除队列头部元素并返回其值
vector<State> children;//用动态数组来表示子状态
pCurrent->GetState().generateChildren(children);
for (int i = 0; i < children.size(); i++)
{
Node* pChild =new Node(children[i], pCurrent);
if (children[i].operator==(Sd))
{
cout << "路径如下" << endl;
pChild->PrintPath();
return 0;
}
queue.push_back(pChild);
}
}
cout << "无解!" << endl;
}
完整的代码
main.cpp
#include <iostream>
#include <list>
#include "State.h"
#include "node.h"
int main()
{
cout << "请输入初态:" << endl;
State Ss;
Ss.display();
cout << "请输入终态:" << endl;
State Sd;
Sd.display();
if (Ss.operator==(Sd))
{
cout << "初态=终态!" << endl;
return 0;
}
else//不相同
{
Node node_s(Ss);
list<Node*> queue;
queue.push_back(&node_s);//将初状态入队
while (queue.size())
{
Node* pCurrent = queue.front();
queue.pop_front();//删除队列头部元素并返回其值
vector<State> children;//用动态数组来表示子状态
pCurrent->GetState().generateChildren(children);
for (int i = 0; i < children.size(); i++)
{
Node* pChild =new Node(children[i], pCurrent);
if (children[i].operator==(Sd))
{
cout << "路径如下" << endl;
pChild->PrintPath();
return 0;
}
queue.push_back(pChild);
}
}
cout << "无解!" << endl;
}
}
State.h
#pragma once
#ifndef STATE_H
#define STATE_H
#include <vector>
#define BD_SIZE 3
using namespace std;
class State
{
public:
State();
void display();
void generateChildren(vector<State>& result);
bool operator ==(State& rv);
private:
int m_data[BD_SIZE * BD_SIZE];
};
#endif
State.cpp
#include <iostream>
#include "State.h"
using namespace std;
State::State()//按照一维数组进行输出
{
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
cin >> m_data[i];
}
}
void State::display()
{
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
if (i % BD_SIZE == BD_SIZE - 1)
cout << m_data[i] << endl;
else
cout << m_data[i] << " ";
}
}
void State::generateChildren(vector<State> &result)
{
int iZero = -1;
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
if (m_data[i] == 0)
iZero = i;
}
//向上移动
if (iZero >= BD_SIZE)
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero - BD_SIZE];
child.m_data[iZero - BD_SIZE] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
//向下移动
if (iZero<BD_SIZE*(BD_SIZE-1))
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero + BD_SIZE];
child.m_data[iZero + BD_SIZE] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
//向左移动
if (iZero%BD_SIZE!=0)
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero-1];
child.m_data[iZero -1] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
//向右移动
if (iZero % BD_SIZE != BD_SIZE-1)
{
State child = *this;
child.m_data[iZero] = child.m_data[iZero + 1];
child.m_data[iZero + 1] = 0;
result.push_back(child);//将child添加到该状态的子状态中来
}
}
bool State::operator==(State& rv)
{
for (int i = 0; i < BD_SIZE * BD_SIZE; i++)
{
if (m_data[i] != rv.m_data[i])
return false;
}
return true;
}
node.h
#pragma once
#ifndef NODE_H
#include <iostream>
#include "State.h"
class Node
{
public:
Node(State &state);
Node(State& state,Node* m_pParent);
State GetState() { return m_state; }
void PrintPath();
private:
State m_state;
Node* m_pParent;
};
#define NODE_H
#endif // !NODE_H
node.cpp
#include <iostream>
#include "node.h"
#include <stack>
Node::Node(State &state):m_state(state),m_pParent(NULL)
{
}
Node::Node(State& state, Node* pParent) :m_state(state), m_pParent(pParent)
{
}
void Node::PrintPath()
{
if (m_pParent)//根结点的父节点不存在
{
m_pParent->PrintPath();
m_state.display();
}
else
{
m_state.display();//展示根结点
}
cout << endl;
}