HDU 2059 龟兔赛跑(线性DP)

4 篇文章 0 订阅

HDU 2059 龟兔赛跑


题目描述

    据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度 (VRm/s) 一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。
    最近正值 HDU 举办 50 周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
    比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
    无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器—— “小飞鸽”牌电动车。这辆车在有电的情况下能够以 VT1m/s 的速度 “飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为 VT2m/s 。更过分的是,乌龟竟然在跑道上修建了很多很多 N) 的供电站,供自己给电动车充电。其中,每次充电需要花费 T 秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
    比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。

输入描述

本题目包含多组测试,请处理到文件结束。每个测试包括四行:
    第一行是一个整数L代表跑道的总长度
    第二行包含三个整数 NCT,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
    第三行也是三个整数 VRVT1VT2 ,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
    第四行包含了 N(N<=100) 个整数 p1,p2...pn ,分别表示各个充电站离跑道起点的距离,其中 0<p1<p2<...<pn<L
    其中每个数都在 32 位整型范围之内。

输出描述

当乌龟有可能赢的时候输出一行 “What a pity rabbit!”。否则输出一行 “Good job,rabbit!”;
题目数据保证不会出现乌龟和兔子同时到达的情况。

样例

Input

100
3 20 5
5 8 2
10 40 60
100
3 60 5
5 8 2
10 40 60

Output

Good job,rabbit!
What a pity rabbit!

题解 :

    最开始我写的是二维状态的 dp, 第二维记录到达站台是否电满, 后来发现万一 c>=dis[i]dis[j] 我没有办法将多余的电量转到以后的状态, 果断放弃。 后来看了看别人的题解才发现原来是一道普通的线性 dp, dp[i] 表示到达 i 站所需要的最短时间,可以得到转移方程 : dp[i]=min(dp[j]+times)(0j<i) 表示在 j 站加了油再到 i 站的时间, 在 dp 中我们加入两个新的点一个是 dp[0]=t (t 为加油的时间), 和一个 dp[n + 1], 我们要求的就是 dp[n + 1], 有人会问为什么不考虑不加油的情况,我们可以看到, 从起点出发总是加了油的, 用 dp[0] 更新答案就已经代表了从起点开始不加油到达的情况, 为什么不考虑 j (j>0) 站不加油的情况 ? 因为之前已经算过了 i 前所有点的最优情况, j 站不加油已经包括在其中。于是我们就可以很愉快的 dp 了。

代码 :

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <ctime>
#include <map>
#include <vector>
using namespace std;

inline int read() {
    int i = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9') {
        if(ch == '-') f = -1; ch = getchar();
    }
    while(ch >= '0' && ch <= '9') {
        i = (i << 3) + (i << 1) + ch - '0'; ch = getchar();
    }
    return i * f;
}

const int MAXN = 100 + 5;
int n, len, a[MAXN]; 
double dp[MAXN];

int main() {
    while(scanf("%d", &len) != EOF) {
        n = read(); int c = read(), t = read();
        int vr =  read(), vt1 = read(), vt2 = read();
        for(int i = 1; i <= n; ++i) a[i] = read(); a[++n] = len;
        double Tr = (double)len / vr * 1.0;
        dp[0] = (double)-t * 1.0;
        for(int i = 1; i <= n; ++i) {
            dp[i] = 1e9;
            for(int j = 0; j < i; ++j)
                if(a[i] - a[j] <= c)
                    dp[i] = min(dp[i], dp[j] + (double)t * 1.0 + (double)(a[i] - a[j]) / vt1 * 1.0);
                else dp[i] = min(dp[i], dp[j] + (double)t * 1.0 + (double)c / vt1 * 1.0 + (double)(a[i] - a[j] - c) / vt2); 
        }
        if(dp[n] <= Tr) printf("What a pity rabbit!\n");
        else printf("Good job,rabbit!\n");
    }
}

本题结束 :

感谢阅读本篇文章,喜欢的话,点个赞吧,你的鼓励就是我最大的动力

有什么意见,尽情发表吧。

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值