分苹果(递归)
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
输出
对输入的每组数据M和N,用一行输出相应的K。
样例输入
1
7 3
样例输出
8
思路: 令苹果为a,盘子为b;
先说一下特殊情况吧
1>没有苹果,即a==0时
此时苹果已经分完,盘子都空,为一种情况
2>只有一个盘子,即b==1时
此时不管有多少个苹果,都只能放到这个唯一的一个盘子里,为一种情况
3>没有盘子
没法放苹果,返回0(可不写)
下面是常规
1>苹果比盘子少,即a<b
至少有b-a个盘子是空着的,用不到,最多用a个盘子,则等于a个苹果放入a个盘子,所以可以写成f(a,a);
2>苹果数等于盘子数
即a=b,可归为3>;
3>else
分两种情况
1)没空盘子,此时每个盘子必有一个苹果,先把每一个盘子都放一个苹果,不影响结果,即f(a-b,b);
2)有空盘子,逐次减一,即f(a,b-1);
好了,上代码
#include<stdio.h>
int f(int a,int b)
{
if(a==0||b==1)
return 1;
if(a<b)
return f(a,a);
else
return f(a-b,b)+f(a,b-1);
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int n,m;
scanf("%d%d",&m,&n);
printf("%d\n",f(m,n));
}
return 0;
}