【问题描述】
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入
苹果个数m 和盘子个数n(0<=M,1<=N<=10)
输出
不同的放法数目
样例输入
7
3
样例输出
8
【算法分析】
- 类比整数划分问题。
- 当n>m:则必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即
if(n>m) f(m,n) = f(m,m)
- 当n <= m:不同的放法可以分成两类:含有0的方案数,不含有0的方案数
(1)含有0的方案数,即有至少一个盘子空着,即相当于 f(m,n)=f(m,n-1)
;
(2)不含有0的方案数,即所有的盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即 f(m,n)=f(m-n,n)
.
- 而总的放苹果的放法数目等于两者的和,即
f(m,n)=f(m,n-1)+f(m-n,n)
【算法实现】
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
int fun(int m,int n)
{
if(m==0||n==1)
return 1;
if(m <n)
return fun(m,m);
else
return fun(m,n-1)+fun(m-n,n);
}
int main()
{
int n;
cin>>n;
while(n--)
{
int m,n;
cin>>m>>n;
cout<<fun(m,n)<<endl;
}
}