放苹果(盘子相同)--递归与分治

【问题描述】

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

输入
苹果个数m 和盘子个数n(0<=M,1<=N<=10)
输出
不同的放法数目
样例输入
7
3
样例输出
8

【算法分析】

  • 类比整数划分问题。
  • 当n>m:则必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即 if(n>m) f(m,n) = f(m,m)
  • 当n <= m:不同的放法可以分成两类:含有0的方案数,不含有0的方案数

(1)含有0的方案数,即有至少一个盘子空着,即相当于 f(m,n)=f(m,n-1);

(2)不含有0的方案数,即所有的盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即 f(m,n)=f(m-n,n).

  • 而总的放苹果的放法数目等于两者的和,即 f(m,n)=f(m,n-1)+f(m-n,n)

【算法实现】

#include <iostream>
#include <cstdio>
#include <cstdlib>

using namespace std;

int fun(int m,int n)
{
    if(m==0||n==1)
        return 1;
    if(m <n)
        return fun(m,m);
    else
        return fun(m,n-1)+fun(m-n,n);
}

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int m,n;
        cin>>m>>n;
        cout<<fun(m,n)<<endl;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值