树状数组(单修区查,区修单查,区修区查)

树状数组(单修区查,区修单查,区修区查)

一些关于树状数组的博客:
https://blog.csdn.net/weixin_43914593/article/details/107842628

https://www.acwing.com/blog/content/80/

树状数组 1 :单点修改,区间查询

给定数列 a1,a2,…,an,你需要依次进行 q 个操作,操作有两类:
1 i x:给定 i,x,将 ai 加上 x;
2 l r:给定 l,r,求 ∑ri=lai 的值(换言之,求 al+al+1+⋯+ar 的值)。

AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=1e6+10;
long long a[N],c[N],n;//a为原数组,c为树状数组
long long lowbit(long long x)//算出有关联的上一位或下一位的差距
{
	return x&(-x);
}
void update(long long int x,long long y)//更新
{
	for(long long i=x;i<=n;i+=lowbit(i))//和当前点有关的树状数组的值都要改变
		c[i]+=y;
}
long long he(long long x)//求1-x的和
{
	long long ans=0;
	for(long long i=x;i>0;i-=lowbit(i))
	ans+=c[i];
	return ans;
}
int main()
{
	long long i,j,k,q,xx,yy,zz;
	scanf("%lld%lld",&n,&q);//一共n个数,q次操作
	for(i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		update(i,a[i]);//初始化
	}
	while(q--)
	{
		scanf("%lld%lld%lld",&xx,&yy,&zz);
		if(xx==1)
			update(yy,zz);
		else
		printf("%lld\n",he(zz)-he(yy-1));
	}
	return 0;
}

树状数组 2 :区间修改,单点查询

给定数列 a[1],a[2],…,a[n],你需要依次进行 q 个操作,操作有两类:
1 l r x:给定 l,r,x,对于所有 i∈[l,r],将 a[i] 加上 x(换言之,将 a[l],a[l+1],…,a[r] 分别加上 x);
2 i:给定 i,求 a[i] 的值。

AC代码:

#include<stdio.h>
#include<string.h>
#define ll long long 
#include<algorithm>
using namespace std;
const int N=1e6+10;
ll a[N],b[N],n;//b[N]是差分数组 
ll lowbit(ll x)
{
	return x&(-x);
}
void update(ll l,ll x)
{
	for(ll i=l;i<=n;i+=lowbit(i))
		b[i]+=x;
}
ll he(ll x)//差分数组的前缀和,即a[x]的值
{
	ll ans=0;
	for(ll i=x;i>0;i-=lowbit(i))
	ans+=b[i];
	return ans;
}
int main()
{
	ll i,j,k,q,xx,yy,zz;
	scanf("%lld%lld",&n,&q);
	for(i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		update(i,a[i]-a[i-1]);//建立差分数组
	}
	while(q--)
	{
		scanf("%lld",&k);
		if(k==1)
		{
			scanf("%lld%lld%lld",&xx,&yy,&zz);
			update(xx,zz);
			update(yy+1,-zz);
		}	
		else
		{
			scanf("%lld",&xx);
			printf("%lld\n",he(xx));
		}
		
	}
	return 0;
}

树状数组 3 :区间修改,区间查询

给定数列 a[1],a[2],…,a[n],你需要依次进行 q 个操作,操作有两类:
1 l r x:给定 l,r,x,对于所有 i∈[l,r],将 a[i] 加上 x(换言之,将 a[l],a[l+1],…,a[r] 分别加上 x);
2 l r:给定 l,r,求 ∑ri=la[i] 的值(换言之,求 a[l]+a[l+1]+⋯+a[r] 的值)。

AC代码:

#include<stdio.h>
#include<string.h>
#define ll long long
#include<algorithm>
using namespace std;
const int N=1e6+100;
ll a[N],c[N],n;//a,c都为差分数组
ll lowbit(ll x)
{
	return x&(-x);
}
void ud1(ll x,ll y)//实现差分数组Di 
{
	for(ll i=x; i<=n; i+=lowbit(i))
		c[i]+=y;
}
void ud2(ll x,ll y)//实现 (i-1)Di 
{
	for(ll i=x; i<=n; i+=lowbit(i))
		a[i]+=y;
}
ll he1(ll x)
{
	ll ans=0;
	for(ll i=x; i>0; i-=lowbit(i))
		ans+=c[i];
	return ans;
}
ll he2(ll x)
{
	ll ans=0;
	for(ll i=x; i>0; i-=lowbit(i))
		ans+=a[i];
	return ans;
}
int main()
{
	ll t,m,i,j,k;
	scanf("%lld %lld",&n,&m);
	k=0;
	for(i=1;i<=n;i++)
	{
		scanf("%lld",&t);
		ud1(i,t-k);
		ud2(i,(i-1)*(t-k));
		k=t;
	}
	while(m--)
	{
		ll q,l,r,d;
		scanf("%lld",&q);
		if(q==1)
		{
			scanf("%lld%lld%lld",&l,&r,&d);
			ud1(l,d);
			ud1(r+1,-d);
			ud2(l,(l-1)*d);
			ud2(r+1,-d*r);
		}
		else
		{
			scanf("%lld%lld",&l,&r);
			printf("%lld\n",r*he1(r)-he2(r)-(l-1)*he1(l-1)+he2(l-1));
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值