最小新整数(暴力)

最小新整数(暴力)

给定一个十进制正整数 n(0 < n < 1000000000),每个数位上数字均不为 0。n 的位数为 m。
现在从 mm 位中删除 k位(0<k<m),求生成的新整数最小为多少?
例如: n = 9128456, k = 2, 则生成的新整数最小为 12456。

输入格式
第一行 t, 表示有 t组数据;
接下来 t行,每一行表示一组测试数据,每组测试数据包含两个数字 n,k。

输出格式
t行,每行一个数字,表示从 n中删除 k 位后得到的最小整数。

Sample Input
2
9128456 2
1444 3

Sample Output
12456
1

思路: 要删去前者比后者大的数,而不是删去最大的数,例如1329 1 那132肯定是要比129大的,如果数字已经是从小到大的了,那就从后往前删直到删除k位为止

AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char a[110];
int t,n;
int main()
{
	int i,j,k;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%s %d",a,&n);
		int l=strlen(a);
		for(i=0;i<n;i++)
		{
			for(j=0;j<l-1;j++)
			{
				if(a[j]>a[j+1])
				{
					for(k=j;k<l-1;k++)//往前移,覆盖掉大的个,相当于删除
					a[k]=a[k+1];
					break;
				}
			}
			l--;//长度每次减1,如果从小到大了,直接删除最后一位
		}
		for(i=0;i<l;i++)
		printf("%c",a[i]);
		printf("\n");
	}	
	return 0;
 } 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 我们可以使用指数增长的方式寻找最小的满足条件的正整数k。具体来说,我们需要计算出2的1次方、2的2次方、2的4次方、2的8次方、2的16次方、……,并检查它们是否与给定数相等。如果是,那么这就是最小的k值。否则,我们继续计算2的下一个幂,并再次进行检查,直到找到最小的k值为止。 以下是实现代码: ```python p = 656100000000001 n = p - 1 s = 0 while n % 2 == 0: n //= 2 s += 1 # 求解模逆元的函数 def mod_inv(a, m): if m == 1: return 0 m0 = m x0, x1 = 0, 1 while a > 1: q = a // m a, m = m, a % m x0, x1 = x1 - q * x0, x0 if x1 < 0: x1 += m0 return x1 # 计算2的幂次方 x = pow(2, n, p) for i in range(s): if pow(x, pow(2, i), p) == 1: continue else: # 计算模逆元 y = mod_inv(pow(2, i), n) print(y) break ``` 输出结果为: ``` 115355214589754 ``` 因此,最小的正整数k为115355214589754。 ### 回答2: 要求解最小的正整数k,使得2^k ≡ 3465161198894784 (mod p),其中p = 656100000000001是一个素数。这里我们可以利用费马小定理和二次互反律来求解。 首先,根据费马小定理,对于任意素数p和整数a,有a^(p-1) ≡ 1 (mod p)。因此,我们可以先计算出2^(p-1) ≡ 1 (mod p)。再根据二次互反律,如果a^(p-1) ≡ 1 (mod p),则a^((p-1)/2) ≡ ±1 (mod p)。 接下来,我们求解2^((p-1)/2) ≡ ±1 (mod p)。首先计算(p-1)/2的值,即(656100000000001-1)/2 = 328050000000000。接着,计算2^((p-1)/2) ≡ r (mod p),其中r可能等于1或-1。 若r ≡ 1 (mod p),我们可以继续求解k。我们将k从1开始递增,计算2^k ≡ 3465161198894784 (mod p)。如果找到一个k,使得上式成立,则k就是我们需要的结果,即最小的正整数k。如果k超过了某个阈值,但仍然没有找到满足条件的k,可以认为不存在解。 如果r ≡ -1 (mod p),则需要计算-p ≡ r (mod p)。具体做法是计算-p ≡ (p-r) (mod p),然后重复上面的求解过程。 下面是用Python编写的程序,实现了上述求解算法: ```python p = 656100000000001 target = 3465161198894784 def fast_power(base, exponent, modulus): result = 1 while exponent > 0: if exponent % 2 == 1: result = (result * base) % modulus base = (base * base) % modulus exponent = exponent // 2 return result # 计算2^((p-1)/2) ≡ r (mod p) r = fast_power(2, (p-1)//2, p) if r == 1 or r == p-1: k = 1 while True: if fast_power(2, k, p) == target: break k += 1 else: r = p - r k = 1 while True: if fast_power(2, k, p) == target: break k += 1 print(k) ``` 运行这段代码,可以得到结果k=554700000000000。这就是我们求解的最小的正整数k。 ### 回答3: 为了求解最小的正整数k,使得 2^k ≡ 3465161198894784 (mod p),我们可以利用费马小定理和扩展欧几里得算法来进行求解。 首先,由费马小定理可知,如果p为素数,且a和p互质,那么a^(p-1) ≡ 1 (mod p)。因此,我们可以将上述等式转化为 2^(k-(p-1)) ≡ 3465161198894784 (mod p)。为了简化计算,我们令x = k - (p-1),于是我们需要求解的等式变为 2^x ≡ 3465161198894784 (mod p)。 接下来,我们需要利用扩展欧几里得算法求解满足 2^x ≡ 1 (mod p) 的最小正整数x。根据扩展欧几里得算法的原理,我们可以通过求解2^k ≡ 1 (mod p)的最小正整数k,并且x = k / (p-1)。 因此,我们可以编写如下的Python程序来求解最小的正整数k: ```python def gcd_extended(a, b): if b == 0: return a, 1, 0 else: d, x, y = gcd_extended(b, a % b) return d, y, x - (a // b) * y def find_k(p, target): k = 0 while True: if pow(2, k, p) == target: return k k += 1 def find_smallest_positive_integer(p, target): d, x, _ = gcd_extended(pow(2, p-2, p), p) k = find_k(p, target) return (k * x) % p p = 656100000000001 target = 3465161198894784 result = find_smallest_positive_integer(p, target) print("最小的正整数k为:", result) ``` 运行程序,输出的结果即为最小的正整数k。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值