直通BAT--数据结构与算法十一(概率)


概率常考题型:

  • 概率与期望的计算
  • 利用古典概率进行计算:组合数学
  • 随机数发生器:利用一个随机数发生器构造另一个随机数发生器

1.球队分组问题

     8只球队,有3个强队,5只弱队,随机把它们分成4组比赛,每组两个队,问两支强队在一起的概率是多大?

     分析:
  • 8只球队分成两两一队:首先随机选一个人,他从剩余的7个中选择一个组队有7中情况;再随机选一个人,他从剩余的5个中选择一个组队有5种情况;再随机选一个人,他从剩余的3个中选择一个组队有3种情况;最后两个组成一队。则共有7*5*3=105种情况。
  • 没有2只强队在一个队:在5只弱队中选3只,与强度进行比赛有C(5,3)种情况;3只强队与3只弱队配对共有A(3,3)种情况;剩下的2只组队;共有C(5,2)*A(3,3)=60;
  • 两支强队在一起的概率:(105-60)/105=3/7。


2.蚂蚁相遇问题
     
     3只蚂蚁从正三角形的三个顶点沿着边移动,速度相同,问它们碰头的概率多大?

     分析:
  • 3只蚂蚁中,每只蚂蚁的方向有2种,即共有8中情况。
  • 不相遇的情况:3只蚂蚁方向均逆时针或顺时针,共2种情况。
  • 相遇的概率:(8-2)/8=3/4。


3.男女比例问题

    某地区重男轻女,一个家庭如果生出一个女孩则一直生,直到生出男孩就停止生育。假如一次只生一个孩子,问时间足够长后,男女比例是多少? 

     分析:
  • 假设总共有n个家庭,其中有n/2为男孩,则男孩有n/2个;
  • 剩下的n/2个女孩家庭,其中有n/4为男孩,n/4为女孩;
  • 剩下的n/4个女孩家庭,其中有n/8为男孩,n/8为女孩;
  • 。。。。。。
  • 最后孩子总数为n/2+n/4*2+n/8*3+......+n/2^n*n=n*(Σ(i/(2^i))=2*n;
  • 其中每家均有一个男孩,男孩个数为n;
  • 则最后的比例为1:1。
          

4.随机函数

     给定一个等概率随机产生1-5的随机函数,除此之外,不能使用任何额外的随机机制,请实现等概率随机产生1-7的随机函数。

     分析: 
  • 1.已经有等概率产生1、2、3、4、5的随机函数
  • 2.根据步骤1,得到的结果减1,将得到f()->0、1、2、3、4
  • 3.f()*5->0、5、10、15、20
  • 4.f()*5+f()->0、1、2、3......23、24
  • 5.如果步骤4产生的数大于20,则重复继续能给你步骤4,直到产生的结果在0-20之间
  • 6.步骤5将等概率随机产生0-20,所以步骤5的结果%7之后等概率产生0-6
  • 7.步骤6的结果加1,等概率产生1-7


5.随机01

     给定一个以p概率产生0,以1-p概率产生1的随机函数RandomP::f(),p是固定的值,但你并不知道是多少。除此之外也不能使用任何额外的随机机制,请用RandomP::f()实现等概率随机产生0和1的随机函数。

     分析:
  • 两次连续执行随机函数,产生结果可能为00、01、10、11;
  • 如果是00、11则放弃;
  • 如果是01则返回0,如果是10则返回1;
  • 01与10产生的概率相等。

6.机器吐球问题

     有一个机器按自然数序列的方式吐出球,1号球,2号球,3号球等等。你有一个袋子,袋子里最多只能装下K个球,并且除袋子以外,你没有更多的空间,一个球一旦扔掉,就再也不可拿回。
     设计一种选择方式,使得当机器吐出第N号球的时候,你袋子中的球数是K个,同时可以保证从1号球到N号球中的每一个,被选进袋子的概率都是K/N。
     举一个更具体的例子,有一个只能装下10个球的袋子,当吐出100个球时,袋子里有10 球,并且1~100号中的每一个球被选中的概率都是10/100。然后继续吐球,当吐出1000个球时,袋子里有 10 个球,并且1~1000号中的每一个球被选中的概率都是10/1000。继续吐球,当吐出i个球时,袋子里有10个球,并且1~i号中的每一个球被选中的概率都是10/i。也就是随着N的变化,1~N号球被选中的概率动态变化成k/N。
     请将吐出第N个球时袋子中的球的编号返回。

     分析:
  • 当N<=k时,球被选中的概率为k/N>1,则一定被放入袋子
  • 当N==k+1时,若k+1号球留下的概率为k/(k+1),其中已经在袋子中的球不留下的概率为k/(k+1)*(1/k)=1/(k+1);已经在袋子中的球留下的概率为1-1/(k+1)=k/(k+1)即全部留下的概率均为K/N 。
  • 当N==k+2时,若k+2号球留下的概率为k/(k+2),其中已经在袋子中的球不留下的概率为k/(k+2)*(1/k)=1/(k+2);已经在袋子中的球留下的概率为1-1/(k+2)=k/(k+2)即全部留下的概率均为K/N 。
  • 以此类推,则保证若N号球留下的概率为k/N时,每个球在袋中的概率均为k/N。

class Bag {
public:
    vector<int> ret;
    // 每次拿一个球都会调用这个函数,N表示第i次调用,从0开始算
    vector<int> carryBalls(int N, int k) {

        if(N < k){
            ret.push_back(N);
        }else{
            int num = rand()%N;
            if(num < k){
                ret[num] = N;
            }
        }
        return ret;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值