【图像增强】平台直方图均衡(PHE)

本文讨论了传统直方图均衡与平台直方图均衡的区别,指出平台均衡在均匀图像和场景移动时的问题,并通过仿真结果展示了其在抑制背景噪声方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、传统直方图均衡

直方图均衡主要是增强背景和噪声,而平台直方图均衡主要是增强目标,抑制背景和噪声。但是,平台直方图均衡存在如下两个缺点:

(1)在图像非常均匀时 (如对着均匀黑体),图像灰度级分布非常集中。如果采用平台直方图均衡,灰度级将拉得过开,图像的噪声将变得很大,会严重影 响观察效果;

(2)图像中场景移动时,图像的整体亮度会发生突变。

二、平台直方图均衡

平台直方图均衡是对直方图均衡的一种修正方法。首先选择一个合适的平台阈值T,对统计直方图进行如下修正 :如果某灰度级的直方图值大于平台阈值T,将其直方图值置为T,如果其直方图值小于平台阈值T ,则保持不变。

{ P t ( k ) = T , p ( k ) > T P t ( k ) = p ( k ) , p ( k ) < = T \begin{cases} P_{t}(k)=T,p(k)>T\\ P_{t}(k)=p(k),p(k)<=T\\ \end{cases} {Pt(k)=T,p(k)>TPt(k)=p(k),p(k)<=T

其中, P t ( k ) P_{t}(k) Pt(k)表示处理后的灰度统计。

然后对限制后的直方图进行累计积分,得到累积直方图,按照以下公式映射到8位图像

D t ( k ) = ( F t ( k ) ) ∗ 255 ∑ F t D_{t}(k)=\frac{(F_{t}(k))*255}{\sum F_{t}} Dt(k)=Ft(Ft(k))255

其中, D t ( k ) D_{t(k)} Dt(k)是灰度为 k k k的像素经过平台直方图均衡化后的灰度值。 F t ( k ) F_{t(k)} Ft(k)表示原始图像数据灰度级

三、仿真效果

以下图是仿真结果,分别是原图、直方图均衡、平台直方图均衡,直方图均衡的结果有过增强现象,平台直方图均衡抑制了背景过增强。

四、参考文献

《一种自适应红外舰船图像增强算法》


我的个人博客主页,欢迎访问

我的CSDN主页,欢迎访问

我的GitHub主页,欢迎访问

我的知乎主页,欢迎访问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AomanHao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值