选择排序
(一)直接选择排序
①特点
1.直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2.时间复杂度:O(N^2)
3.空间复杂度:O(1)
4.稳定性:不稳定
②基本思想
已这组数据为例
在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
③代码
public static void selectSort(int[] array) {
for (int i = 0; i < array.length; i++) {
for (int j = i + 1; j < array.length; j++) {
if (array[i] > array[j]) {
swap(array, i, j);
}
}
}
}
public static void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
(二)堆排序
①特点
1.堆排序使用堆来选数,效率就高了很多。
2.时间复杂度:O(N*logN)
3.空间复杂度:O(1)
4.稳定性:不稳定
②基本思想:
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
1.首先要了解大堆和小堆的概念(堆是完全二叉树)
2.堆的构造
这里以升序为例,也就是构造大根堆
public static void heapInsert(int[] array) {
for (int i = 0; i < array.length; i++) {
int curIndex = i;
int fatherIndex = (curIndex - 1) / 2;
while (array[curIndex] > array[fatherIndex]) {
swap(array, curIndex, fatherIndex);
curIndex = fatherIndex;
fatherIndex = (curIndex - 1) / 2;
}
}
}
3.利用大根堆排序(向下调整)
public static void heap(int[] array, int index, int size) {
int left = index * 2 + 1;
int right = index * 2 + 2;
while (left < size) {
int largeIndex;
if (array[left] < array[right] && right < size) {
largeIndex = right;
} else {
largeIndex = left;
}
if (array[largeIndex] < array[index]) {
largeIndex = index;
}
if (index == largeIndex) {
break;
}
swap(array, largeIndex, index);
index = largeIndex;
left = 2 * index + 1;
right = 2 * index + 2;
}
}
4.总体框架
public static void heapSort(int[] array) {
//根据数组的升序或是降序来选择大根堆或者小根堆的构建,这里我们构建大根堆(因为我们希望数组升序排列)
heapInsert(array);
int size = array.length;
while (size > 1) {
//此时,我们已经得到一个大根堆,下面将顶端的数与最后一位数交换,然后将剩余的数再构造成一个大根堆
swap(array, 0, size - 1);
size--;
/**
* 此时最大数已经来到末尾,则固定不动,后面只需要对顶端的数据进行操作即可,
* 拿顶端的数与其左右孩子较大的数进行比较,如果顶端的数大于其左右孩子较大的数,则停止,
* 如果顶端的数小于其左右孩子较大的数,则交换,然后继续与下面的孩子进行比较
*/
heap(array, 0, size);
//剩余的数开始构造大根堆 ,然后顶端数与末尾数交换,固定最大值再构造大根堆,重复执行上面的操作,最终会得到有序数组
}
}