Non-Local Network理解与Mindspore框架下的实现

本文介绍了Non-LocalNetwork的算法原理,它扩展了局部感受野的概念,通过计算特征图上所有位置的加权和来获取响应。在MindSpore框架下,NonlocalBlockND是关键结构,支持多种相似度计算方法。文章还提供了具体的代码示例,展示如何在模型中集成NonlocalBlockND,并给出了实验结果,展示了其在精度上的表现。
摘要由CSDN通过智能技术生成

可执行案例参考:Non-Local Notebook

一、Non-Local Network 算法原理介绍

non-local

Nonlocal这一词是相对于local而来的,那我们就先说说local。论文Non-local Neural Networks(王小龙,CVPR2018)中所提到的local其实是针对感受野(receptive field)而言的,例如在卷积操作中,卷积核的大小就是感受野的大小,但是卷积核的大小一般都比较小,最常用的3*3,5*5等等,只能感受局部区域,因此称为local。Nonlocal则是更大的感受野,并非一个局部区域。

论文中的nonlocal将某一位置的响应当做是一种从特征图谱所有位置的加权和来计算,这些位置既可以代表空间位置, 也可以代表时间, 时空等。Nonlocal其实和self-attention机制十分相关。在文中,为了能够将提出的nonlocal block当作一个组件自由的接入到各个神经网络中,作者设计的nonlocal 操作使得输入输出大小一致,具体实现公式如下:

公式中,x代表输入,y代表输出,i和j分别代表输入的某个空间位置,xi是一个向量,维数跟x的channel数一样,f是一个计算任意两点相似关系的函数,g是一个映射函数,将一个点映射成一个向量,即该点的特征。为了计算输出层的一个点,需要将输入的每个点都考虑一遍,考虑的方式就和attention机制类似:过程中mask则是根据f函数给出,再和g映射函数相乘,最后求和,输出的某个点在原图上的attention。每个点以这样的方式计算,最后得到一个nonlocal的“attention map”。

图1

图1中,θ和Φ来自于f函数,g即g函数。文中,关于g函数,作者设计为1*1*1的卷积。关于f函数,则有四种相似度量函数可供选择:Gaussian、Embedded Gaussian、Dot Product、Concatenation。

Gaussian function的公式如下:

Embedded Gaussian的公式如下:

Dot product的公式如下:

Concatenation的公式如下:

以上就是nonlocal的算法原理的概要介绍了。

二、Minspore框架下的实现

1.NonlocalBlockND(nn.Cell)

Nonlocal最重要的结构是NonlocalBlockND(nn.Cell),该block包含四种成对相似度计算公式,以dot_product为例,主要通过三个Conv3d进行线性变换。NonlocalBlockND操作只需用到常用的卷积、矩阵相乘、加法、softmax等算子,用户可以非常方便的实现组网以构建模型。

class NonLocalBlockND(nn.Cell):
    r"""
    Classification backbone for nonlocal.
    Implementation of Non-Local Block with 4 different pairwise functions.

    Applies Non-Local Block over 5D input (a mini-batch of 3D inputs with additional channel dimension).
    .. math::
        embedded_gaussian:
        f(x_i, x_j)=e^{\theta(x_i)^{T} \phi(x_j)}.
        gaussian:
        f(x_i, x_j)=e^{{x_i}^{T} {x_j}}.
        concatenation:
        f(x_i, x_j)=\{ReLU}({w_f}^{T}[\theta(x_i), \phi(x_j)]).
        dot_product:
        f(x_i, x_j)=\theta(x_i)^{T} \phi(x_j).

    Args:
        in_channels (int): original channel size.
        inter_channels (int): channel size inside the block if not specified reduced to half.
        mode: 4 mode to choose (gaussian, embedded, dot, and concatenation).
        bn_layer: whether to add batch norm.

    Inputs:
        - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.

    Outputs:
        Tensor of shape :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.

    Examples:
        >>> net = nn.NonLocalBlockND(in_channels=3, bn_layer=bn_layer)
        >>> x = zeros((2, 3, 8, 20, 20), mindspore.float32)
        >>> output = net(x).shape
        >>> print(output)
        (2, 3, 8, 20, 20)
        """

    def __init__(
            self,
            in_channels,
            inter_channels=None,
            mode='embedded',
            sub_sample=True,
            bn_layer=True):

        super(NonLocalBlockND, self).__init__()

        if mode not in ['gaussian', 'embedded', 'dot', 'concatenation']:
            raise ValueError(
                '`mode` must be one of `gaussian`, `embedded`, `dot` or `concatenation`')
        self.mode = mode
        self.transpose = ops.Transpose()
        self.batmatmul = ops.BatchMatMul()
        self.tile = ops.Tile()
        self.concat_op = ops.Concat(1)
        self.zeros = ops.Zeros()
        self.softmax = ops.Softmax(axis=-1)

        self.in_channels = in_channels
        self.inter_channels = inter_channels

        if self.inter_channels is None:
            self.inter_channels = in_channels // 2
            if self.inter_channels == 0:
                self.inter_channels = 1

        self.g = nn.Conv3d(in_channels=self.in_channels,
                           out_channels=self.inter_channels,
                           kernel_size=1,
                           has_bias=True
                           )

        if bn_layer:
            self.w = nn.SequentialCell(
                nn.Conv3d(in_channels=self.inter_channels,
                          out_channels=self.in_channels,
                          kernel_size=1
                          ),
                nn.BatchNorm3d(self.in_channels)
            )
        else:
            self.w = nn.Conv3d(in_channels=self.inter_channels,
                               out_channels=self.in_channels,
                               kernel_size=1
                               )
        if self.mode in ["embedded", "dot", "concatenation"]:
            self.theta = nn.Conv3d(in_channels=self.in_channels,
                                   out_channels=self.inter_channels,
                                   kernel_size=1,
                                   has_bias=True
                                   )
            self.phi = nn.Conv3d(in_channels=self.in_channels,
                                 out_channels=self.inter_channels,
                                 kernel_size=1,
                                 has_bias=True
                                 )
        if self.mode == "concatenation":
            self.concat_project = nn.SequentialCell(
                nn.Conv2d(
                    self.inter_channels * 2,
                    out_channels=1,
                    kernel_size=1,
                    pad_mode='same',
                    has_bias=False),
                nn.ReLU()
            )

        if sub_sample:
            max_pool_layer = MaxPool3D(
                kernel_size=(1, 2, 2), strides=(1, 2, 2))
            self.g = nn.SequentialCell(self.g, max_pool_layer)
            if self.mode != 'gaussian':
                self.phi = nn.SequentialCell(self.phi, max_pool_layer)
            else:
                self.phi = max_pool_layer

    def construct(self, x):
        "nonlocalblock construct."
        batch_size = x.shape[0]
        g_x = self.g(x).view((batch_size, self.inter_channels, -1))
        input_perm = (0, 2, 1)
        g_x = self.transpose(g_x, input_perm)
        f = self.zeros((1, 1, 1), mindspore.float32)
        if self.mode == "gaussian":
            theta_x = x.view((batch_size, self.in_channels, -1))
            theta_x = self.transpose(theta_x, input_perm)
            phi_x = x.view(batch_size, self.in_channels, -1)
            f = self.batmatmul(theta_x, phi_x)
        elif self.mode in ["embedded", "dot"]:
            theta_x = self.theta(x).view((batch_size, self.inter_channels, -1))
            theta_x = self.transpose(theta_x, input_perm)
            phi_x = self.phi(x).view((batch_size, self.inter_channels, -1))
            f = self.batmatmul(theta_x, phi_x)
        elif self.mode == "concatenation":
            theta_x = self.theta(x).view(
                (batch_size, self.inter_channels, -1, 1))
            phi_x = self.phi(x).view((batch_size, self.inter_channels, 1, -1))
            h = theta_x.shape[2]
            w = phi_x.shape[3]
            theta_x = self.tile(theta_x, (1, 1, 1, w))
            phi_x = self.tile(phi_x, (1, 1, h, 1))
            concat_feature = self.concat_op((theta_x, phi_x))
            f = self.concat_project(concat_feature)
            b, _, h, w = f.shape
            f = f.view((b, h, w))
        f_div_c = self.zeros((1, 1, 1), mindspore.float32)
        if self.mode in ["gaussian", "embedded"]:
            f_div_c = self.softmax(f)
        elif self.mode in ["dot", "concatenation"]:
            n = f.shape[-1]
            f_div_c = f / n
        y = self.batmatmul(f_div_c, g_x)
        y = self.transpose(y, input_perm)
        y = y.view((batch_size,
                    self.inter_channels,
                    x.shape[2],
                    x.shape[3],
                    x.shape[4]))
        w_y = self.w(y)
        z = x + w_y
        return z

2. Nonlocal3d

Nonlocal3d包含backbone、avg_pool、flatten、head几部分组成。大致可以归纳为如下几点。

第一部分:backbone部分是NLResInflate3D50(NLInflateResNet3D类),它是在NLInflateResNet3D结构中实现[3,4,6,3]规格的stage。而NLInflateResNet3D该结构是继承于ResNet3d50的结构,在ResNet3d50的[3,4,6,3]第2,3两个stage中的10层以每隔1层的方式插入一个NonlocalBlockND。

第二部分:NLResInflate3D50输出到一个平均池化并flatten。

第三部分:分类头。将flatten后的tensor输入到Dropdensehead进行分类,得到shape(N,NUM_CLASSES)的tensor。

首先是的NLResInflate3D50(NLInflateResNet3D类)的实现:

class NLInflateBlock3D(ResidualBlock3D):
    """
    ResNet3D residual block definition.

    Args:
        in_channel (int): Input channel.
        out_channel (int): Output channel.
        stride (int): Stride size for the second convolutional layer. Default: 1.
        group (int): Group convolutions. Default: 1.
        base_width (int): Width of per group. Default: 64.
        norm (nn.Cell, optional): Module specifying the normalization layer to use. Default: None.
        down_sample (nn.Cell, optional): Downsample structure. Default: None.

    Returns:
        Tensor, output tensor.

    Examples:
        >>> from mindvision.classification.models.backbones import ResidualBlock
        >>> ResidualBlock(3, 256, stride=2)
    """

    expansion: int = 4

    def __init__(self,
                 in_channel: int,
                 out_channel: int,
                 conv12: Optional[nn.Cell] = Inflate3D,
                 group: int = 1,
                 base_width: int = 64,
                 norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None,
                 non_local: bool = False,
                 non_local_mode: str = 'dot',
                 **kwargs
                 ) -> None:
        super(NLInflateBlock3D, self).__init__(in_channel=in_channel,
                                               out_channel=out_channel,
                                               mid_channel=out_channel,
                                               conv12=conv12,
                                               group=group,
                                               norm=norm,
                                               activation=[nn.ReLU, nn.ReLU],
                                               down_sample=down_sample,
                                               **kwargs)
        # conv3d doesn't support group>1 now at 1.6.1 version
        out_channel = int(out_channel * (base_width / 64.0)) * group
        self.non_local = non_local
        if self.non_local:
            in_channels = out_channel * self.expansion
            self.non_local_block = NonLocalBlockND(
                in_channels, mode=non_local_mode)

    def construct(self, x):
        """NLInflateBlock3D construct."""
        identity = x

        out = self.conv12(x)
        out = self.conv3(out)

        if self.down_sample:
            identity = self.down_sample(x)

        out += identity
        out = self.relu(out)
        if self.non_local:
            out = self.non_local_block(out)
        return out


class NLInflateResNet3D(ResNet3D):
    """Inflate3D with ResNet3D backbone and non local block.

    Args:
        block (Optional[nn.Cell]): THe block for network.
        layer_nums (list): The numbers of block in different layers.
        norm (nn.Cell, optional): The module specifying the normalization layer to use. Default: None.
        stage_strides: Stride size for ResNet3D convolutional layer.
        non_local: Determine whether to apply nonlocal block in this block.

    Inputs:
        - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.

    Returns:
        Tensor, output tensor.

    Supported Platforms:
        ``GPU``

    Examples:
        >>> import numpy as np
        >>> import mindspore as ms
        >>> from mindvision.msvideo.models.backbones.nonlocal3d import ResNetI3D, ResNetI3DResidualBlock
        >>> net = ResNet(ResNetI3DResidualBlock, [3, 4, 6, 3])
        >>> x = ms.Tensor(np.ones([1, 3, 32, 224, 224]), ms.float32)
        >>> output = net(x)
        >>> print(output.shape)
        (1, 2048, 16, 7, 7)
    """

    def __init__(self,
                 block: Optional[nn.Cell],
                 layer_nums: Tuple[int],
                 stage_channels: Tuple[int] = (64, 128, 256, 512),
                 stage_strides: Tuple[int] = ((1, 1, 1),
                                              (1, 2, 2),
                                              (1, 2, 2),
                                              (1, 2, 2)),
                 down_sample: Optional[nn.Cell] = Unit3D,
                 inflate: Tuple[Tuple[int]] = ((1, 1, 1),
                                               (1, 0, 1, 0),
                                               (1, 0, 1, 0, 1, 0),
                                               (0, 1, 0)),
                 non_local: Tuple[Tuple[int]] = ((0, 0, 0),
                                                 (0, 1, 0, 1),
                                                 (0, 1, 0, 1, 0, 1),
                                                 (0, 0, 0)),
                 **kwargs
                 ):
        super(NLInflateResNet3D, self).__init__(block=block,
                                                layer_nums=layer_nums,
                                                stage_channels=stage_channels,
                                                stage_strides=stage_strides,
                                                down_sample=down_sample
                                                )
        self.in_channels = stage_channels[0]
        self.conv1 = Unit3D(3, stage_channels[0], kernel_size=(
            5, 7, 7), stride=(1, 2, 2), norm=self.norm)
        self.maxpool = Maxpool3DwithPad(kernel_size=(
            1, 3, 3), padding=(0, 0, 1, 1, 1, 1), strides=(1, 2, 2))
        self.pool2 = ops.MaxPool3D(kernel_size=(2, 1, 1), strides=(2, 1, 1))
        self.layer1 = self._make_layer(
            block,
            stage_channels[0],
            layer_nums[0],
            stride=tuple(stage_strides[0]),
            norm=self.norm,
            inflate=inflate[0],
            non_local=non_local[0],
            **kwargs)
        self.layer2 = self._make_layer(
            block,
            stage_channels[1],
            layer_nums[1],
            stride=tuple(stage_strides[1]),
            norm=self.norm,
            inflate=inflate[1],
            non_local=non_local[1],
            **kwargs)
        self.layer3 = self._make_layer(
            block,
            stage_channels[2],
            layer_nums[2],
            stride=tuple(stage_strides[2]),
            norm=self.norm,
            inflate=inflate[2],
            non_local=non_local[2],
            **kwargs)
        self.layer4 = self._make_layer(
            block,
            stage_channels[3],
            layer_nums[3],
            stride=tuple(stage_strides[3]),
            norm=self.norm,
            inflate=inflate[3],
            non_local=non_local[3],
            **kwargs)

    def construct(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.pool2(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        return x


class NLResInflate3D50(NLInflateResNet3D):
    """
    The class of ResNet50 uses the registration mechanism to register, need to use the yaml configuration file to call.
    """

    def __init__(self, **kwargs):
        super(NLResInflate3D50, self).__init__(
            NLInflateBlock3D, [3, 4, 6, 3], **kwargs)

接下来是nonlocal3d的实现:

class nonlocal3d(nn.Cell):
    """
    nonlocal3d model

    Xiaolong Wang.
    "Non-local Neural Networks." 
    https://arxiv.org/pdf/1711.07971v3

    Args:
        in_d: Depth of input data, it can be considered as frame number of a video. Default: 32.
        in_h: Height of input frames. Default: 224.
        in_w: Width of input frames. Default: 224.
        num_classes(int): Number of classes, it is the size of classfication score for every sample,
            i.e. :math:`CLASSES_{out}`. Default: 400.
        pooling_keep_dim: whether to keep dim when pooling. Default: True.
        keep_prob(float): Probability of dropout for multi-dense-layer head, the number of probabilities equals
            the number of dense layers.
        pretrained(bool): If `True`, it will create a pretrained model, the pretrained model will be loaded
            from network. If `False`, it will create a nonlocal3d model with uniform initialization for weight and bias.
        backbone: Bcxkbone of nonlocal3d.
        avg_pool: Avgpooling and flatten.
        head: LinearClsHead architecture.
    Inputs:
        - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.

    Outputs:
        Tensor of shape :math:`(N, CLASSES_{out})`.

    Supported Platforms:
        ``GPU``

    Examples:
        >>> import numpy as np
        >>>
        >>> import mindspore as ms
        >>> from mindspore import Tensor
        >>> from mindvision.msvideo.models import nonlocal3d
        >>>
        >>> net = nonlocal3d()
        >>> x = Tensor(np.random.randn(1, 3, 32, 224, 224).astype(np.float32))
        >>> output = net(x)
        >>> print(output.shape)
        (1, 400)
    """

    def __init__(self,
                 in_d: int = 32,
                 in_h: int = 224,
                 in_w: int = 224,
                 num_classes: int = 400,
                 keep_prob: float = 0.5,
                 backbone: Optional[nn.Cell] = NLResInflate3D50,
                 avg_pool: Optional[nn.Cell] = AdaptiveAvgPool3D,
                 flatten: Optional[nn.Cell] = nn.Flatten,
                 head: Optional[nn.Cell] = DropoutDense
                 ):
        super(nonlocal3d, self).__init__()
        last_d = math.ceil(in_d / 32)
        last_h = math.ceil((math.ceil(in_h / 32) + 1) / 4)
        last_w = math.ceil((math.ceil(in_w / 32) + 1) / 4)
        backbone_output_channel = 512 * last_d * last_h * last_w

        self.backbone = backbone()
        self.avg_pool = avg_pool((1, 1, 1))
        self.flatten = flatten()
        self.head = head(input_channel=backbone_output_channel,
                         out_channel=num_classes,
                         keep_prob=keep_prob)

    def construct(self, x):
        x = self.backbone(x)
        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.head(x)

        return x

3. 实验结果

在mindspore框架下进行精度测试,得到如下精度,接近于原文精度:

[Start eval `nonlocal`]
eval: 1/19877
eval: 2/19877
eval: 3/19877
eval: 4/19877
eval: 5/19877
eval: 6/19877
eval: 7/19877
eval: 8/19877
eval: 9/19877
eval: 10/19877
...
eval: 19874/19877
eval: 19875/19877
eval: 19876/19877
eval: 19877/19877
{'Top_1_Accuracy': 0.7248, 'Top_5_Accuracy': 0.9072}

三、代码仓库

如有读者对mindspore框架下Non-Local Network感兴趣的话,可以使用如下仓库:

nonlocal_mindspore

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值