计算式
#一元计算函数
np.mean(a) #等于 a.mean()
np.max(a)
np.min(a)
np.abs(a) np.fabs(a)
np.sqrt(a) #开方
np.square(a) #平方
np.log(a) np.log10(a) np.log2()
np.ceil(a) np.floor(a) #浮点
np.rint(a) #四舍五入
np.modf(a) #将元素的小数与整数分离,返回包含两个数组的tuple
np.exp(a) #指数
np.sign(a) #符号对应的值,1(+),0,-1(-)
np.cos(a) np.cosh(a)
np.sin(a) np.sinh(a)
np.tan(a) np.tanh(a)
#二元计算函数
+ - * / **
np.maximum(x,y) np.fmax() #依次比较x,y中的元素,返回较大者组成的数组
np.minimum(x,y) np.fmin()
np.mod(x,y)
np.copysign(x,y) #将y中的符号copy给x
< > <= >= == != #返回布尔值
索引,切片
#一维 与list相同
a[0] #索引
a[0:4:1] #切片,a[start:stop:step]
#多维 每个维度与一维时相同
a[0,1,2] #这里假设有三维数组a。数字为索引,顺序为第一维,第二维,第三维,可以单个使用,如:a[0],a[0,0]
a[1:,::2,-1] #一定要理解维度与索引
变换
a.reshape(shape) #不改变数组
a.resize(shape) #改变数组
a.swapaxes(ax1,ax2) #将两个维度调换,0是第一维,1是第二维,不能超过
a.flatten #降成一维
a.T #矩阵行列转换
new_a = a.astype(new_type) #copy
ls = a.tolist() #to list
创建数组
import numpy as np
a = np.array(list/tuple, dtype=np.int)
np.arange([start,] stop[, step], dtype=None)
np.eye(N, M=None, k=0, dtype=<class 'float'>, order='C')
np.ones(shape, dtype=None, order='C')
np.zeros(shape, dtype=float, order='C')
np.full(shape, fill_value, dtype='None', order='C')
np.ones_like(a, dtype='None', order='K', subok=True, shape=None) #a is ndarray/list
np.zeros_like(a)
np.full_like(a,val)
np,linspace(star,stop,num=50,endpoint=True,retstep=False,dtype=None,axis=0)
np.concatanate((a1,a2...),axis=0,out=None)
Ndarray对象的属性
a.ndim #秩
a.shape #对于矩阵,n行m列
a.size #元素个数,n*m
a.dtype #元素类型
a.itemsize #每个元素的字节数
基本概念
#实际数据
#元数据(数据类型,维度)
#轴(axis):保存数据的维度,最外层[]的维度为0,向里则加1,不要把维度与索引搞混
#秩(rank):轴的数量