题目传送门:【BZOJ 3790】
题目大意:母亲节就要到了,小 H 准备送给她一个特殊的项链。这个项链可以看作一个用小写字母组成的字符串,每个小写字母表示一种颜色。为了制作这个项链,小 H 购买了两个机器。第一个机器可以生成所有形式的回文串,第二个机器可以把两个回文串连接起来,而且第二个机器还有一个特殊的性质:假如一个字符串的后缀和一个字符串的前缀是完全相同的,那么可以将这个重复部分重叠。例如:aba 和 aca 连接起来,可以生成串 abaaca 或 abaca。输入包含多组数据。现在输入目标项链的样式,询问你需要使用第二个机器多少次才能生成这个特殊的项链。 (每行字符串长度 ≤ 50000,每组数据不超过 5 行)
题目分析:
一道 Manacher 的模板题。根据题意,每个字符串都是由若干个回文子串组合而成,所以我们需要求出所有的回文子串。求出回文子串,直接使用 Manacher 即可实现。然后,这道题就被转化为了“线段覆盖问题”:根据回文串的覆盖区间来判断合并两个回文子串的次数。此时我们便可以用贪心思想或 DP 判断。(然而我只用的贪心,更好做)
我们对每一个位置设为回文中心,然后记录下以该位置为回文中心时的左右端点;之后再按左端点排序,如果左端点一样则把右端点位置更大的排在前面。之后,每次在已被覆盖的区间中寻找能触及右边最远位置的回文子串。如果无法找到,那么使用第二个机器合并子串的次数便 +1。最后统计所有位置并输出答案即可。(具体操作见代码)
下面附上代码:
#include<cstdio>
#include<cstring>
#include<cctype>
#include<iostream>
#include<algorithm>
using namespace std;
const int MX = 100005;
const int INF = 0x3f3f3f3f;
struct Lim{
int l,r;
}lim[MX]; //lim:每一个回文子串覆盖的左右边界
char ori[MX],ap[MX]; //ori:原字符串 ap:插入'#'之后的字符串
int pal[MX],mr = 0,id = 0,len = 0,ge = 0; //pal:回文半径 mr:回文串能到达的最右边的位置
//id:能到达 mr 的回文串的中心位置(回文起始位)
//ge:临时变量
bool comp(const Lim& i,const Lim& j){
if (i.l != j.l) return i.l < j.l;
return i.r > j.r;
}
void cover(int lf,int rt){ //求出这个回文子串的覆盖区间
lim[++ge].l = lf;
lim[ge].r = rt;
}
int manacher(){
for (int i = 1;i <= len;i++){
if (i < mr)
pal[i] = min(pal[2 * id - i],mr - i);
else
pal[i] = 1;
while (ap[i - pal[i]] == ap[i + pal[i]])
pal[i]++;
if (i + pal[i] - 1 > mr)
mr = i + pal[i] - 1,id = i;
cover(i - pal[i] + 1,i + pal[i] - 1);
}
/*以下内容为区间覆盖问题,贪心思想*/
int s = 0,tmp = 2,now; //tmp为位置,从实际字母开始;s为最终结果
sort(lim + 1,lim + len + 1,comp);
mr = lim[1].r; //此时的mr为"能被覆盖到的最右边的位置"
while (mr < len - 2){
now = mr;
while (tmp <= len && lim[tmp].l <= mr){//贪心选择,每次取已被覆盖区间中能向右触及最远位置的字符
if (lim[tmp].r > now) now = lim[tmp].r;
tmp++;
}
s++,mr = now;
}
return s;
}
void _init(){
memset(ori,0,sizeof(ori));
memset(pal,0,sizeof(pal));
memset(lim,0,sizeof(lim));
memset(ap,0,sizeof(ap));
id = 0,mr = 0,ge = 0;
}
int main(){
while (scanf("%s",ori) != EOF){
len = strlen(ori);
ap[0] = '+';
for (int i = 1;i <= len;i++){
ap[2 * i] = ori[i - 1];
ap[2 * i - 1] = '#';
}
ap[2 * len + 1] = '#';
len = strlen(ap); //此时的len为原字符串长度 * 2 + 2
ap[len] = '-';
cout<<manacher()<<endl;
_init();
}
return 0;
}