[BZOJ 4726] Sabota? 树形DP+贪心思想

题目传送门:【BZOJ 4726】

本题为权限题,下面有详细题意


题目大意:公司有 n 个人,(除老板以外)每个人有且只有一个直接上司。公司里有一个叛徒(未给明)。若一个人的下属(直接或者间接,不包括他自己)中叛徒占的比例超过 x,他和他的所有下属都会变为叛徒。求出叛徒的个数不会超过 k 的情况下最小的 x。(本题为 SPJ)

输入的第一行包含两个正整数 n , k(1 ≤ k ≤ n ≤ 5*10 5 )。
接下来 n-1 行,第 i 行包含一个正整数 p i+1 ,表示 i+1 的父亲是 p i+1 (1 ≤ p i+1 ≤ i)。

输出一行,为一个实数 x,x 的误差在 10 6 以内都被认为是正确的。

9 3
1 1 2 2 2 3 7 3

样例输入样例输出
9 30.6666666667
1 1 2 2 2 3 7 3

HINT:答案中的 x 实际上是一个无限趋近于 2/3 但是小于 2/3 的数;
因为当 x 取 2/3 时,最坏情况下 3,7,8,9 都是叛徒,超过了k=3。


题目分析:

分析整个题意,我们可以发现,题目要求为最坏情况,那么我们可以贪心的思想证明叛徒肯定是某个叶子节点。
同时,每个节点的状态很可能和它的子树的状态有关。于是我们考虑 DP。

我们观察到每个节点的状态有两类:以该节点为根的子树没有全变为叛徒 / 已经全变为叛徒。对于前者,它由两种状态组成:
【1】某一个子树全是叛徒,但是在容忍度之内
【2】某个子树中有叛徒,但是它没有超过容忍度,因此该子树没有全变为叛徒
对于后者,它仅由一种状态组成:
自己的某一个子树中有叛徒,且叛徒比例大于容许比例

于是我们可以使用树形 DP 的思路秒掉这道题。具体的转移方程为:
dp i 表示无法使i的子树中所有人都变成叛徒的最小x,可以列出方程
dp i = max ( dp i , min ( dp j , sizej(sizei1) ) )
(其中 j 是 i 的儿子,size 表示这个节点的子树大小,包括自己)

下面附上代码:

  1. #include<cstdio>  
  2. #include<algorithm>  
  3. using namespace std;  
  4. const int MX=500005;  
  5.   
  6. struct Edge{  
  7.     int to,next;  
  8. }edge[MX*2];  
  9. int n,k,now=0,head[MX],siz[MX];  
  10. bool leaf[MX];  
  11. double dp[MX],min_d=0;  
  12. //leaf[i]: 判断 i 号节点是否为叶子节点   
  13. //dp[i]: 无法使 i 的子树全变成叛徒的最小 x 值   
  14.   
  15. inline void adde(int u,int v){  
  16.     edge[++now].to=v;  
  17.     edge[now].next=head[u];  
  18.     head[u]=now;  
  19. }  
  20. void dfs(int u){  
  21.     bool son=false;  
  22.     siz[u]=1;  
  23.     for (int i=head[u];i;i=edge[i].next){  
  24.         int v=edge[i].to;  
  25.         son=true;  
  26.         dfs(v);  
  27.         siz[u]+=siz[v];  
  28.     }  
  29.     if (son)  
  30.         for (int i=head[u];i;i=edge[i].next){  
  31.             int v=edge[i].to;  
  32.             dp[u]=max(dp[u],min(dp[v],1.0*siz[v]/(siz[u]-1)));  
  33.         }  
  34.     else  
  35.         dp[u]=1.0,leaf[u]=true;  
  36. }  
  37.   
  38. int main(){  
  39.     int a;  
  40.     scanf(”%d%d”,&n,&k);  
  41.     for (int i=2;i<=n;i++){  
  42.         scanf(”%d”,&a);  
  43.         adde(a,i);  
  44.     }  
  45.     dfs(1);  
  46.     for (int i=1;i<=n;i++)  
  47.         if (siz[i]>k)  
  48.             min_d=max(dp[i],min_d);  
  49.     printf(”%0.10lf”,min_d);  
  50.     return 0;  
  51. }  
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个的父节是它的前驱或者后继,然后我们从根节开始,依次向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值