[BZOJ 1925][SDOI 2010] 地精部落 DP/递推

题目传送门:【BZOJ 1925】


题目大意: 我们认为 n 个位置的高度形成了 1 到 n 的一个排列,这个排列要么满足奇数项的高度比相邻位置都大,要么满足偶数项的高度比相邻位置都大(即:一高一低型)。给定 n,求出符合条件的排列数对 P 取模的值。(3 ≤ n ≤ 4200,P ≤ 10 9


题目分析:

这道题是我认为非常好的题了,它的解题关键就在于想到 DP/递推转移方程式。

如题,看到这道题,我们有可能一眼会以为它是一道 DP/递推 水题,于是想当然地写出这样的定义:dp i,j 表示当前已经解决到第 i 个数,这一位数是 j 。然而,这样做不能去掉“不存在解”的情况,因为我们无法知道前面都选了哪些数,所以“强行转移”就会有极大的后效性,因此我们不能这样定义。

于是我们换一种思路。考虑到前 i 个数为 1 ~ i 的排列,容易想到:能否利用这个性质进行 DP/递推呢?答案是肯定的。

如果前 i1 个数形成了 1 ~ (i1) 的排列,设最后那一个数为 x;那么对于第 i 个数,如果现在的高度要上升,我们可以尝试着加入比 x 大的数 x’,遇到前面有比 x’ 大的数就全部 +1,这样也是一种合法的排列。如果现在的高度要下降,那么此时我们就加入比 x 小的数 x”,然后遇到前面有比 x” 大的数也全部 +1。可以证明,这样做是正确的。

那么 DP/递推方程就容易写出来了:dpi,j += dp i1,k
其中,当现在的高度要上升时,k = j~i;当现在的高度要下降时,k = 1~(j-1)。

我们利用前缀和/后缀和的性质,可以将 k 给优化掉,由开始的 O(n 3 ) 优化到 O(n 2 )。

本题卡空间,需要使用滚动数组

下面附上代码:

  1. #include<cstdio>  
  2. #include<cstring>  
  3. #include<algorithm>  
  4. using namespace std;  
  5. typedef long long LL;  
  6. const int MX=4205;  
  7.   
  8. int n,mod;  
  9. int dp[2][MX],ans=0;  
  10. //dp(i,j): 前 i 个数形成的排列,末位数为 j 的总方案数   
  11.   
  12. void solve(){  
  13.     int f=1;  
  14.     dp[1][1]=1;  
  15.     //奇数位下降,偶数位上升;这里 f=1 为下降,f=0 为上升   
  16.     for (int i=2;i<=n;i++){  
  17.         f^=1;  
  18.         if (f){     //奇数下降   
  19.             for (int j=1;j<i;j++){  
  20.                 dp[1][j]=(dp[1][j]+dp[0][j])%mod;  
  21.             }  
  22.             memset(dp[0],0,sizeof(dp[0]));  
  23.             for (int j=1;j<=i;j++){  
  24.                 dp[1][j]=(dp[1][j]+dp[1][j-1])%mod;  
  25.             }  
  26.         } else {    //偶数上升   
  27.             for (int j=2;j<=i;j++){  
  28.                 dp[0][j]=(dp[0][j]+dp[1][j-1])%mod;  
  29.             }  
  30.             memset(dp[1],0,sizeof(dp[1]));  
  31.             for (int j=i;j>=1;j–){  
  32.                 dp[0][j]=(dp[0][j]+dp[0][j+1])%mod;  
  33.             }  
  34.         }  
  35.     }  
  36. }  
  37.   
  38. int main(){  
  39.     scanf(”%d%d”,&n,&mod);  
  40.     n–;  
  41.     solve();  
  42.     for (int i=1;i<=n;i++){  
  43.         ans=(ans+dp[n&1][i])%mod;  
  44.     }  
  45.     ans=(ans+ans)%mod;  
  46.     if (n==0) ans=1%mod;  
  47.     printf(”%d”,ans);  
  48.     return 0;  
  49. }  
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值