leetcode 50. Pow(x, n)

题目如下:

Implement pow(xn).


Example 1:

Input: 2.00000, 10
Output: 1024.00000

Example 2:

Input: 2.10000, 3
Output: 9.26100
 

大概意思就是让我们写一个求幂的函数,由之前做密码时得出的经验,一般涉及到幂的运算都是使用快速幂的方法,我也动手写了,但是测试点到倒数第四个就挂了,测试点如下:


n的取值为-2147483648,为整型最小的负数,为什么会崩现在还不是很懂,搞懂了我会更新的。使用快速幂的时间复杂度为O(log₂N),理论上来说已经很小了。后来看了看讨论区的解答,用了二分递归的方法,感觉时间复杂度也是O(log₂N),至于为什么会过我也很好奇,代码如下:

class Solution {
public:
    double myPow(double x, int n) {
        //double r=1,base=x;
        if(n==0)
            return 1;
   		//int an=abs(n);
  		/*while(an)
		  {
    		if(an&1) r*=base;
    		base*=base;
    		an>>=1;
  		}*/
  		double a=x;
  		int t=n;t=t/2;
  		if(n<0)
  		{
  			a=1/x;
  			t=-t;
		  }
        if(n%2==0)
        return myPow(a*a,t);
        else if(n%2!=0)
        return a*myPow(a*a,t);
    }
};

注释部分为快速幂的方法,大概的思路为如果n可以被2整除,那么结果就变成了(x^2)^(n/2),如果n是奇数,那么结果就可以写成x*(x^2)^(n/2),思路就是如此,额外使用变量t时为了避免直接对n取反导致上溢。

大概分析一下时间复杂度,使用快速幂的话在上述的测试点循环的次数为31次,而二分的递归次数也是31次,但是实际测试的时候快速幂的方法的确是跑了半天没反应,但是二分却可以瞬间出结果,而二者在时间复杂度上是一样的。难道是我写错了???

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值