题目如下:
Implement pow(x, n).
Example 1:
Input: 2.00000, 10 Output: 1024.00000
Example 2:
Input: 2.10000, 3 Output: 9.26100
大概意思就是让我们写一个求幂的函数,由之前做密码时得出的经验,一般涉及到幂的运算都是使用快速幂的方法,我也动手写了,但是测试点到倒数第四个就挂了,测试点如下:
n的取值为-2147483648,为整型最小的负数,为什么会崩现在还不是很懂,搞懂了我会更新的。使用快速幂的时间复杂度为O(log₂N),理论上来说已经很小了。后来看了看讨论区的解答,用了二分递归的方法,感觉时间复杂度也是O(log₂N),至于为什么会过我也很好奇,代码如下:
class Solution {
public:
double myPow(double x, int n) {
//double r=1,base=x;
if(n==0)
return 1;
//int an=abs(n);
/*while(an)
{
if(an&1) r*=base;
base*=base;
an>>=1;
}*/
double a=x;
int t=n;t=t/2;
if(n<0)
{
a=1/x;
t=-t;
}
if(n%2==0)
return myPow(a*a,t);
else if(n%2!=0)
return a*myPow(a*a,t);
}
};
注释部分为快速幂的方法,大概的思路为如果n可以被2整除,那么结果就变成了(x^2)^(n/2),如果n是奇数,那么结果就可以写成x*(x^2)^(n/2),思路就是如此,额外使用变量t时为了避免直接对n取反导致上溢。
大概分析一下时间复杂度,使用快速幂的话在上述的测试点循环的次数为31次,而二分的递归次数也是31次,但是实际测试的时候快速幂的方法的确是跑了半天没反应,但是二分却可以瞬间出结果,而二者在时间复杂度上是一样的。难道是我写错了???