最短路 Dijkstra算法

Dijkstra算法是一种求解最短路径的算法,适用于非负权重。它从起点开始逐层扩展,直到找到目标点。算法的核心是找到已确定最短距离的顶点并更新其相邻顶点的最短距离。未优化的Dijkstra算法初始复杂度较高,但通过优先队列优化后可达O(|E|log|V|)。若存在负权重边,应使用Bellman-Ford算法。
摘要由CSDN通过智能技术生成

Dijksitra算法求最短路仅仅适用于不存在右边是负权的情况(Bellman-Ford算法没有这一个限制)。主要特点是从起点为中心向外层层扩展,直到扩展到终点为止。

最短路的最优子结构性质

即一个最短路路径中经过的所有点这条路均是其最短路。(反证法易证)

Dijkstra基本思路:
①找到最短距离已经确定的顶点,从它出发更新相邻顶点的最短距离
②此后不需要再关心1中的”最短距离已经确定的顶点”

在最开始的时候,只有起点的最短距离是确定的。而在尚未使用过的顶点中,距离d[i]最小的顶点就是最短距离已经确定的顶点。由于不存在负边,所以d[i]不会再之后的更新中变小。这就是Dijkstra算法。
Dijkstra算法演示

未优化的Dijkstra算法代码

int cost[max_v][max_v]; //使用邻接矩阵储存边(不存在就是INF)
int d[max_v]; //最短距离
bool used[max_v]; /
当然可以!以下是使用Dijkstra算法求解最短路径的MATLAB代码示例: ```matlab function [dist, path] = dijkstra(adjMatrix, startNode) numNodes = size(adjMatrix, 1); % 初始化距离数组 dist = inf(1, numNodes); dist(startNode) = 0; % 初始化路径数组 path = cell(1, numNodes); path{startNode} = startNode; % 创建一个标记数组,用于记录节点是否已被访问 visited = false(1, numNodes); % 运行Dijkstra算法 for i = 1:numNodes-1 % 找到当前距离最小的节点 [~, currentNode] = min(dist .* ~visited); visited(currentNode) = true; % 更新与当前节点相邻的节点的距离 neighbors = find(adjMatrix(currentNode, :)); for j = neighbors if ~visited(j) && dist(currentNode) + adjMatrix(currentNode, j) < dist(j) dist(j) = dist(currentNode) + adjMatrix(currentNode, j); path{j} = [path{currentNode}, j]; end end end end ``` 使用示例: ```matlab % 定义一个邻接矩阵表示图的连接关系 adjMatrix = [ 0 3 0 4 0; 3 0 5 0 0; 0 5 0 2 6; 4 0 2 0 1; 0 0 6 1 0 ]; % 调用Dijkstra算法求解最短路径 [startNode, endNode] = deal(1, 5); [dist, path] = dijkstra(adjMatrix, startNode); % 输出结果 disp(['从节点', num2str(startNode), '到节点', num2str(endNode), '的最短距离为:', num2str(dist(endNode))]); disp(['最短路径为:', num2str(path{endNode})]); ``` 这段代码实现了Dijkstra算法的逻辑,并且可以根据输入的邻接矩阵和起始节点,求解出最短路径的距离和路径。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值