强化学习Upper Confidence Bound策略笔记

        UCB是一种强大的探索策略,它通过对每个动作的置信界限进行估计,在探索和利用之间取得平衡,以找到最优的动作选择策略。

        Upper Confidence Bound(UCB,上置信界限)是一种用于解决多臂机问题的探索策略。它的核心思想是在探索和利用之间取得平衡,通过对每个动作的置信界限进行估计,以选择最优的动作。

思想和原理:

  1. 探索与利用平衡: 在多臂机问题中,智能体需要在探索未知动作和利用已知信息之间取得平衡。UCB通过对每个动作的潜在最大回报进行置信度估计,以便在不确定性较高的动作上进行更多尝试,以探索潜在的高回报动作,同时在已知回报较高的动作上进行利用,从而最大化长期收益。

  2. 置信界限估计: 对于每个动作,UCB会根据已知数据和置信度估计其潜在最大回报的上限。这个上限称为置信界限,通常表示为一个置信区间,可以表示为平均回报加上一个置信度相关的修正项。置信度的估计通常使用上界不等式(如Hoeffding不等式或Chernoff不等式)来计算。

  3. 动作选择: 在每次选择动作时,UCB会计算每个动作的置信界限,并选择具有最高置信界限的动作作为当前的选择。这样做的好处是,它能够在利用已知信息和探索未知信息之间取得平衡,从而找到全局最优的动作选择策略。

实现细节:

UCB的实现步骤如下:

  1. 初始化: 在开始时,为每个动作初始化一个置信界限的初始估计值。

  2. 动作选择: 对于每次选择动作,计算每个动作的置信界限。通常,置信界限会考虑动作被选择的次数和已知的奖励信息。

  3. 选择最优动作: 选择具有最高置信界限的动作作为当前的选择。

  4. 观察结果: 执行所选择的动作,并观察结果(如奖励)。

  5. 更新置信界限: 根据观察到的结果,更新每个动作的置信界限估计。这通常会根据贝叶斯更新或其他方法来进行。

  6. 重复: 重复步骤2到5,直到达到预定的终止条件(如固定次数或达到时间限制)。

        通过这种方式,UCB能够在每次选择动作时,根据已知数据和置信度估计进行决策,从而最大化长期的收益。

        下面是一个使用 Ray 来实现 Upper Confidence Bound(UCB)策略解决多臂机问题的简单示例代码:

import numpy as np
import ray

ray.init()

@ray.remote
class Bandit:
    def __init__(self, true_mean):
        self.true_mean = true_mean
        self.num_pulls = 0
        self.total_reward = 0
    
    def pull_arm(self):
        # 模拟从动作中拉杆获取奖励
        reward = np.random.binomial(1, self.true_mean)
        self.num_pulls += 1
        self.total_reward += reward
        return reward
    
    def get_ucb(self):
        if self.num_pulls == 0:
            return float('inf')  # 如果还未尝试过这个动作,将其置信度设置为无穷大
        else:
            mean_reward = self.total_reward / self.num_pulls
            return mean_reward + np.sqrt(2 * np.log(ray.get(total_pulls)) / self.num_pulls)

# 创建多臂赌博机实例
num_bandits = 5
true_means = np.random.uniform(0, 1, num_bandits)
bandits = [Bandit.remote(mean) for mean in true_means]

# UCB策略
def ucb(bandits):
    ucb_values = ray.get([bandit.get_ucb.remote() for bandit in bandits])
    best_bandit = np.argmax(ucb_values)
    return best_bandit

# 进行多轮选择
num_rounds = 1000
chosen_bandits = []
total_pulls = 0
for _ in range(num_rounds):
    total_pulls += 1
    best_bandit = ucb(bandits)
    reward = ray.get(bandits[best_bandit].pull_arm.remote())
    chosen_bandits.append(best_bandit)

print("Chosen bandits:", chosen_bandits)

        在这个示例中,我们首先定义了一个 Bandit 类,它代表了每个动作(或选项)。然后,我们创建了多个 Bandit 实例作为多臂机的每个动作。在每轮选择中,我们使用 UCB 策略来选择动作,即计算每个动作的置信上界,然后选择具有最高置信上界的动作。通过这种方式,我们能够在探索和利用之间取得平衡,以找到最优的动作选择策略。

  • 8
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值