约分最简分式
分数可以表示为分子/分母
的形式。编写一个程序,要求用户输入一个分数,然后将其约分为最简分式。最简分式是指分子和分母不具有可以约分的成分了。如6/12可以被约分为1/2。当分子大于分母时,不需要表达为整数又分数的形式,即11/8还是11/8;而当分子分母相等时,仍然表达为1/1的分数形式。
输入格式:
输入在一行中给出一个分数,分子和分母中间以斜杠/
分隔,如:12/34
表示34分之12。分子和分母都是正整数(不包含0,如果不清楚正整数的定义的话)。
提示:
- 对于C语言,在
scanf
的格式字符串中加入/
,让scanf
来处理这个斜杠。 - 对于Python语言,用
a,b=map(int, input().split('/'))
这样的代码来处理这个斜杠。
输出格式:
在一行中输出这个分数对应的最简分式,格式与输入的相同,即采用分子/分母
的形式表示分数。如5/6
表示6分之5。
输入样例:
66/120
输出样例:
11/20
思路分析:
问题:
- 如何约去相同数;--->求二者最大公约数;
- 分子=分母时,如何处理
解决:
- for循环,找到既能被fz%==0的数又能被fm%==0的数,找到最大的数赋给max
- 单独讨论fz==fm,让其输出为1/1;
实现代码:
int main(){
int fz,fm;
int max;
scanf("%d/%d",&fz,&fm);
for(int i = 1;i<fm;i++){ //找最大公约数
if(fz%i==0&&fm%i==0)
max = i;
}
if(fz == fm)//分子=分母
printf("1/1");
else
printf("%d/%d",fz/max,fm/max);
}