Description
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
Solution
广搜
复杂度:
O
(
m
n
)
,
O
(
m
i
n
(
m
,
n
)
)
O(mn), O (min(m,n))
O(mn),O(min(m,n))
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> res(n,1);
for (int i = 1; i < m; ++i)
for (int j = 0 ; j < n; ++j)
if (j>0)
res[j] = res[j] + res[j-1];
return res[n-1];
}
};
result:
Runtime: 4 ms, faster than 100.00% of C++ online submissions for Unique Paths.
Memory Usage: 8.3 MB, less than 60.14% of C++ online submissions for Unique Paths.