python文本分析与关键词提取,相似度计算

本文介绍了文本分析中的关键概念,包括停用词的作用、TF-IDF算法在关键词提取中的应用,以及如何通过这些技术分析文章内容。举例说明了蜜蜂养殖在文章中的代表性,并提供了搜狗新闻文本分析的实例链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

没啥用的词,并且大量出现叫做停用词

关键词提取 tf-idf

提取出文章中比较有代表性的文字,这里面就是蜜蜂和养殖

相似度

 

搜狗新闻文本分析实例

https://blog.csdn.net/Arthur_Holmes/article/details/99431106

https://nbviewer.jupyter.org/github/nightsswatch/MLProject/blob/master/Python%E6%96%87%E6%9C%AC%E5%88%86%E6%9E%90/news_C.ipynb

https://github.com/nightsswatch/MLProject/blob/master/Python%E6%96%87%E6%9C%AC%E5%88%86%E6%9E%90/news_C.ipynb

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值