- 博客(56)
- 资源 (2)
- 问答 (1)
- 收藏
- 关注
原创 (论文)PartialSpoof 数据库和检测话语中嵌入的短假语音片段的对策
自动说话人验证容易受到各种作和欺骗,例如文本到语音合成、语音转换、重放、篡改、对抗性攻击等。我们考虑一种称为“部分欺骗”(PS) 的新欺骗方案,其中合成或转换的语音片段嵌入到真正的话语中。虽然现有的对策 (CM) 可以检测到完全欺骗的话语,但需要将其调整或扩展到 PS 方案。我们提出了各种改进,以构建一个明显更准确的 CM,它可以以更精细的时间分辨率检测和定位短生成的欺骗语音片段。首先,我们引入了新开发的自我监督预训练模型作为增强的特征提取器。
2025-02-26 15:32:53
938
原创 LlamaPartialSpoof数据集介绍
这是Llama PartialSpoof项目的官方资料库。该数据集准备从zenodo下载。关注LlamaPartialSpoof项目的最新资源和信息,并通过该知识库进行部分虚假言论的更新。
2025-02-26 15:28:57
382
原创 PartialSpoof数据集介绍
PartialSpoof数据库专注于部分伪造音频,即音频中某些段落是伪造的(通过文本到语音合成或语音转换生成),其他部分是真实的。数据库基于ASVspoof 2019 LA数据库构建,通过替换真实音频的某些段落生成部分伪造音频。研究表明,训练于完全伪造数据的反欺骗措施在测试部分伪造数据时性能显著下降,而训练于部分伪造数据的模型在两种场景下均表现可靠。PartialSpoof数据库是一个强大的工具,用于研究部分伪造音频的反欺骗措施。
2025-02-26 15:27:15
1108
原创 (论文)用于语音欺骗检测的自监督学习实验案例研究
本研究旨在通过自我监督的预训练来提高语音欺骗攻击检测的性能。监督式学习需要适当的输入变量和相应的标签来构建要应用的机器学习模型。需要保护大量标记的数据集,以提高监督学习过程的性能。但是,标记需要投入大量的时间和精力。管理此要求的方法之一是自我监督学习,它使用伪标记,而无需大量人工输入。本研究试验了对比学习(一种表现良好的自我监督学习方法)来构建语音欺骗检测模型。我们在对比学习框架中应用了 MoCo 的动态字典、SimCLR 的对称损失和 COLA 的双线性相似性。
2025-02-25 09:37:01
856
原创 (论文)使用双频分析检测 AI 合成的语音
从语音到图像和视频,机器学习的进步导致所谓的 AI 合成内容的质量和真实感得到显着提高。虽然有许多令人兴奋和有趣的应用程序,但这种类型的内容也可用于创建令人信服且危险的假货。我们寻求开发能够区分真实人声和合成人声的取证技术。我们观察到,用于合成语音的深度神经网络引入了人类语音中通常没有的特定和不寻常的频谱相关性。虽然不一定可以听到,但这些相关性可以使用双频分析工具进行测量,并用于区分人类语音和合成语音。1. 数据集构建数据来源人类语音。
2025-02-25 09:32:09
749
原创 (论文)检测部分欺骗音频的初步调查
部分伪造语音包含真实和伪造的段落,这种混合性质使得检测更加困难。例如,攻击者可能使用语音合成技术替换特定的短语,以达到欺骗的目的。
2025-02-24 11:11:24
1041
原创 (论文)使ConvNeXt模型适应语音数据集上的音频分类
在计算机视觉中,ConvNeXt 等卷积神经网络 (CNN) 已经能够超越最先进的转换器,部分归功于深度可分离卷积 (DSC)。DSC 作为常规卷积的近似值,使 CNN 在时间和内存复杂性方面更加高效,而不会降低其准确性,有时甚至会提高准确性。在本文中,我们首先将 DSC 实现到预训练音频神经网络 (PANN) 系列中,以便在 AudioSet 上进行音频分类,以展示其在准确性/模型大小权衡方面的优势。其次,我们将现在著名的 ConvNeXt 模型应用于相同的任务。
2025-02-24 11:04:29
969
原创 计算机端口及其服务
这将会停止缓慢的连接。入侵者的帐户被关闭,他们需要连接到高带宽的E-MAIL服务器上,将简单的信息传递到不同的地址。说明:它是动态端口的开始,许多程序并不在乎用哪个端口连接网络,它们请求系统为它们分配下一个闲置端口。大多数对这个端口的扫描是基于UDP的,但是基于TCP的mountd有所增加(mountd同时运行于两个端口)。记住:一种LINUX蠕虫(admv0rm)会通过这个端口繁殖,因此许多这个端口的扫描来自不知情的已经被感染的用户。说明:有时会看到很多这个端口的扫描,这依赖于用户所在的位置。
2025-02-24 11:01:30
1136
原创 常用计算机网络命令
该命令会显示数据包从本地计算机到目标地址所经过的路由器列表,每个路由器显示其。通过查看数据包的往返时间(RTT),可以判断网络延迟情况。通过查看路由路径,可以判断网络拥塞情况或定位网络故障点。用于查看和配置网络接口信息,在Windows系统中使用。命令可以查看和修改这些信息,以便控制数据包的转发路径。该命令可以查看当前计算机上所有网络连接的状态,包括。用于检测网络连通性,判断目标地址是否可达。该命令可以查看当前计算机上所有网络接口的。用于追踪网络数据包的路由路径。,找到占用特定端口的进程。
2025-02-24 10:59:47
497
原创 常见网络设备及其作用
冲突域是一个以太网术语,指的是这样一组联网的设备,即网段中 的一台设备发送分组时,该网段中的其他所有设备都必须侦昕它。广播域中,网段中的所有设备都 侦昕在该网段中发送的广播。
2025-02-24 10:57:26
400
原创 google hacking介绍
以下是和,涵盖渗透测试、信息收集、漏洞挖掘等场景的实用技巧。所有语法均基于 Google 搜索引擎的合法功能,但请严格遵守法律和道德规范。谷歌、百度、bing、搜狗(搜索微信文章)、雅虎等略有差异详细用法:(1)site: =主域名,搜索其主要域名下面的子域名(2)allintext: = 搜索文本,但不包括网页标题和链接(3)allinlinks: = 搜索链接, 不包括文本和标题。(4)related:URL = 列出于目标URL地址有关的网页。
2025-02-24 10:40:11
1039
原创 (论文)通过聚合和分离进行音频深度伪造检测的领域泛化
鉴于此,我们试图学习一个理想的特征空间,能够聚合真实语音并分离虚假语音,以实现在未见到的目标域检测中更好的泛化性。因此,文章的研究重点是通过聚合和分离的方法来改善模型的泛化能力,同时增强模型隐藏状态的可解释性,以应对这些挑战。:通过上述方法,ASDG旨在构建一个理想的特征空间,其中真实语音的特征聚集在一起,形成一个单一的簇,而伪造语音的特征则分散在更广泛的区域。ASDG方法的核心思想是通过聚合真实语音的特征分布和分离伪造语音的特征分布,来构建一个理想的特征空间。这些特征被分类为真实和伪造,以便后续处理。
2025-01-23 21:39:31
1581
原创 Markdown 语法总结
的方式,但这是有争议的,因为很难在编辑器中直接看到空格,并且很多人在每个句子后面都会有意或无意地添加两个空格。如需使用HTML,不需要额外标注这是HTML或是Markdown,只需HTML标签添加到Markdown文本中即可。)的方式实现换行,但是并非所有Markdown应用程序都支持此种方式,因此从兼容性的角度来看,不推荐使用。等标签,必须在前后加上空行,以便于内容区分。HTML行级內联标签和区块标签不同,在內联标签的范围内,Markdown的语法是可以解析的。
2025-01-18 14:01:23
989
原创 SSH config
起因就是我发现大部分人对 SSH 只会基本的 ssh user@ip 的方式登录服务器,至多再会个配置免密,而对 SSH config 几乎不了解。事实上 SSH 可以灵活批量配置服务器信息,配置跳板等等。本文努力普及一些使用细节,希望有一天大家都熟练了 SSH config,以后我就可以直接给别人发送 SSH config 配置项而不需要作任何解释了。SSH config 作用就是可以把 SSH 相关的信息都记录到一个配置文件,可以简化操作、节约时间。SSH config 有一个系统级的,一个用户级的。
2025-01-17 09:40:22
1488
原创 Markdown高级拓展语法
由于 style 标签和标签的 style 属性不被支持,所以这里只能是借助 table, tr, td 等表格标签的 bgcolor 属性来实现背景色。故这里对于文字背景色的设置,只是将那一整行看作一个表格,更改了那个格子的背景色(bgcolor)。KaTeX 拥有比 MathJax 更快的性能,但是它却少了很多 MathJax 拥有的特性。你可以在一行中用三个以上的星号、减号、底线来建立一个分隔线,行内不能有其他东西。你也可以在星号或是减号中间插入空格。
2025-01-17 09:35:21
941
原创 (论文)HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
生成器是一个全卷积神经网络。实验表明,可以使用相同的鉴别器和学习机制训练不同配置的生成器,这表明可以根据目标规格灵活选择生成器配置,而无需耗时的超参数搜索鉴别器。4.MPD应用权重归一化,通过将输入音频重塑为2D数据而不是对音频进行周期采样,可以将 MPD 的梯度传递到输入音频的所有时间步中。每个残差块可以选择不同的核大小和扩张率,以形成不同的感受野模式,,在合成效率和样品质量之间进行权衡,以匹配自己的需求。鉴别器对生成器生成的样本的预测与1之间的差异的平方,使生成的样本更接近于真实样本。
2025-01-16 15:06:38
978
原创 (论文)The Sound of Silence: Efficiency of First Digit Features in Synthetic Audio Detection
传统的音频检测方法依赖于复杂的特征提取和机器学习模型,但它们可能在面对新型生成方法时失效。它基于一个观察到的现象,即在自然发生的数值数据集中,首位数字的分布往往遵循特定的规律,如本福德定律(Benford's Law)。通过分析音频信号的数值特征,特别是信号幅度中第一位数字的分布,验证了这种特征在区分自然音频和合成音频中的有效性。尽管FD statistics在合成语音检测中显示出了潜力,但如何准确地从合成音频中提取首位数字特征,以及如何处理静音部分和语音部分的不同特性,仍然是研究中的挑战。
2025-01-16 15:03:21
841
原创 (论文)MADD: A Multi-lingual Multi-speaker Audio Deepfake Detection Dataset
语言覆盖:MADD数据集包含六种语言:法语、德语、意大利语、泰语、印尼语和越南语。这些语言包括高资源语言和低资源语言,旨在促进跨语言的伪造检测研究。样本数量:数据集总共包含129,990个合成语音样本。时长:合成音频的总时长约为155.66小时。说话者数量:数据集由288名说话者参与,确保了说话者的多样性。
2025-01-16 14:56:49
890
原创 (论文)一种基于部分欺骗音频检测的基于临时深度伪造位置方法的高效嵌入
其中矩阵a∈Rk × T是一个相似矩阵,计算每个时间位置的局部相似性,a[ i , t]表示第t个特征向量和它的k个邻居之间的相似性。通过计算真实帧之间、伪造帧之间以及真实帧与伪造帧之间的相似性,确保真实帧在不同位置之间相似,而伪造帧在不同位置之间也相似,但真实帧与伪造帧之间则应保持不相似。其中fmt为输出特征向量的第m个通道的值,⌊· · ·⌋表示向下取整操作,[ · · ·]表示矩阵的切片,( · )表示内积。在实际操作中,邻居的设置为1,计算每个时间位置的局部相似性。
2025-01-16 14:49:56
1042
3
原创 (论文)Does Current Deepfake Audio Detection Model Effectively Detect ALM-based Deepfake Audio?
编解码器训练的 CM 表现令人惊喜,多数 EER 接近 0%,W2V2 - AASIST 的 EER 为 9.424%,但部分模型存在将真实音频误判为假音频的情况,对音乐等新音频类型适应性较差。结果表明,经过编解码器训练的 CM 可以有效地检测这些基于 ALM 的音频,大多数 EER 接近 0%。通过收集和生成最新的 12 种基于 ALM 的音频并使用 SOTA 性能 CM 对其进行评估来评估当前的 deepfake 音频检测模型是否能有效检测基于 ALM 的 deepfake 音频这个问题。
2025-01-16 14:45:47
687
原创 (论文)结合帧级边界检测和深度伪造检测,定位部分伪造音频攻击中的篡改区域
提出了一种新颖的检测方法,结合了帧级边界检测和深度伪造检测技术,能够有效识别和定位部分伪造音频中的伪造区域
2025-01-16 14:41:08
1522
原创 Obsidian 与其他生产力工具集成
Obsidian 是一款功能强大的笔记和知识管理工具,但与其他生产力工具集成时,其真正潜力才会得到释放。通过将 Obsidian 与 Todoist、Google 日历等应用程序连接起来,您可以创建一个无缝的工作流程,从而提高您的工作效率并确保您的所有任务和信息都同步。本文探讨如何将 Obsidian 与各种生产力工具集成,以构建一个有凝聚力和高效的生产力系统。
2025-01-16 14:33:53
1632
原创 论文高级GPT指令推荐
头脑风暴选题指令:分析研究方向指令:评估研究想法指令: 总结文献关键信息指令: 查找高影响力文献指令: 创建文献综述大纲指令: 建议研究方法指令: 设计实验指令: 评估研究方法优缺点指令: 数据分析指令: 实验结果解读指令: 讨论研究意义指令: 撰写摘要指令: 撰写引言指令: 改进段落指令: 改写句子指令: 建议论文标题指令: 生成关键词指令: 撰写结论指令: 创建讨论部分大纲指令: 论证研究意义指令: 改进论文章节指令: 识别方法论缺陷指令: 制定研究假设指令: 撰写研究计划指令: 识别伦理问题指令: 定
2025-01-15 14:16:14
1568
原创 (论文)FRAME-TO-UTTERANCE CONVERGENCE: A SPECTRA-TEMPORAL APPROACH FOR UNIFIED SPOOFING DETECTION
这表明,仅考虑片段级特征是不够的,需要一种更为全面的方法,能够同时兼顾片段级和话语级的伪影特征,从而有效应对各种类型的语音欺骗攻击,提高反欺骗技术的有效性和可靠性。近期的统一解决方案虽然尝试同时检测物理和逻辑攻击,但往往在检测过程中表现出明显的偏向性,倾向于其中某一种攻击类型的检测,无法做到公平、全面地应对各种攻击。引入一种基于频谱 - 时间的统一方法,用于检测不同类型的语音欺骗攻击,包括合成、重放和部分深度伪造攻击等,填补了现有技术在应对多种欺骗攻击方面的不足,为语音欺骗检测提供了更全面的解决方案。
2025-01-14 09:58:20
753
原创 (论文)Deep4SNet: deep learning for fake speech classification
所提出的架构使用2092个原始和虚假语音记录的直方图进行训练,并使用864个直方图进行交叉验证。近年来,基于遗传算法(GA)、蚁群优化(ACO)、支持向量机(SVM)和深度学习(DL)的方法也被提出用于语音验证和伪造语音检测。模型训练使用了2092个直方图,这些直方图来自原始语音和伪造语音录音。实验设置:实验使用了基于模仿方法和Deep Voice算法生成的原始和伪造语音录音。提出了一种基于深度学习的伪造语音检测方法,能够有效区分原始语音和通过模仿及Deep Voice技术生成的伪造语音。
2025-01-14 09:52:49
1013
转载 50 个实用又有趣的网站工具,全都是宝藏神器
给大家分享一款的在线 PDF 处理工具合集,包含了 27 个 PDF 工具。PDF 合并、分割、编辑、压缩、格式转换、OCR文本识别、添加水印等……统统支持!所有功能都可以免费使用,还有 Windows 客户端,,安全放心,相当良心给力!
2025-01-09 09:40:37
1287
原创 (论文)Partially Spoofed Audio Detection(ICASSP 2024)
其中矩阵a∈Rk × T是一个相似矩阵,计算每个时间位置的局部相似性,a[ i , t]表示第t个特征向量和它的k个邻居之间的相似性。在实际操作中,邻居设置为1,a[ i , t]、a[ i , t-1 ]、a[ i , t + 1]之间进行相似度计算。我们对两个序列1D - CNN上的W2V2特征进行时间卷积操作,其中输入通道和输出通道都保持不变,以保持时间维度上的一致性。理解:其中fmt为输出特征向量的第m个通道的值,⌊· · ·⌋表示向下取整操作,[ · · ·]表示矩阵的切片,( · )表示内积。
2024-06-05 08:41:13
1239
原创 python爬虫(爬取京东商品评论)
如果只需要代码可以跳转到最后一步(记着更换商品ID和评论页的的页数话不多说,直接开干!文章所提供的代码不能用于商业用途 仅建议学习交流使用 否则后果自负。
2024-03-10 19:04:17
9685
39
原创 Jarvisoj刷题笔记(CTF Basic题)
某天A君的网站被日,管理员密码被改,死活登不上,去数据库一看,啥,这密码md5不是和原来一样吗?为啥登不上咧?d78b6f302l25cdc811adfe8d4e7c9fd34请提交PCTF{原来的管理员密码}
2023-10-01 17:18:57
815
原创 二叉树的遍历-树转换成二叉树-哈夫曼树(YNU数据结构实验五)
1.用C或C++语言建立二叉树,并实现二叉树的先根、中根、后根遍历。2.在此基 础上,实现树与二叉树的相互转换。3.实现一个简单的哈夫曼编码/译码器,能根据一段电文设计赫夫曼编码,并能用该编码对一段给定的电文进行译码。
2022-12-25 22:30:43
406
原创 这儿有你所需要的所有关于科研的网址
上面主要给大家介绍了一些学术文献、数据等常用网站,接下来学妹将为大家安利那些写论文超好用的工具,大部分是软件/app/插件,一起往下看!
2022-10-24 20:24:54
8184
原创 【开发软件的人】
开发软件的人 ——《人件》读后感内容简介社会的复杂性远比技术上的挑战难处理得多,并且很多时候社会因素比技术因素更重要。而团队是一个非常重要的因素,如何管理团队,项目、改善工作环境,形成高效团队这是不可避免和忽略的。其中主要内容为:第一部分:软件系统的主要问题在于社会性因素。我们应当被鼓励去试错、多思考、少加班、减少压力、追求质量。第二部分:我们应该给员工提供更好的办公环境:安静、空间大、有窗户、有门。不要打断自己的工作流,不要接不必要的电话。第...
2022-05-01 23:55:05
310
原创 排序数和组合数算法
🛫为了更加地方便计算排序数和组合数,所以有了下面的代码😎😎:import java.util.Scanner;public class BuildClass{ public static void main(String args[]){ System.out.println("———————————————————————————"); System.out.println("——————————组合数·1——————————\n——————————排序数·0——————————");
2022-04-13 18:49:20
167
原创 【个人博客网页模板】
🔞✨✨✨✨💖💖💖💖🔞<!DOCTYPE html><html lang="zh"><head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width,initial-scale=1"> <me
2022-04-11 22:52:34
6234
原创 排序算法之【冒泡排序】
🎇简单的C语言程序设计算法🎇#include <stdio.h>#include <time.h> int main(){ int n; printf("How many numbers that you want to sort:\n"); scanf("%d", &n); int i, randNum, num[n]; srand(time(NULL)); for(i=0;i<n;i++){ randNum = 1 + (int)rand
2022-04-06 20:14:37
877
基础C语言程序设计源码
2022-01-24
软件工程以后具体是干嘛?
2022-02-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人