TVM量化原理
关于量化的方式其实已经有足够的文章去了解目前最主流的两种:离线量化及训练时量化(大家应该能理解,其实就是伪量化),而tvm的作者之一也对这些文章有一个初步的汇总:tvm作者关于量化方式的讨论,这部分不做过多讨论,直接进入tvm量化的部分
TVM量化现状
事实上,可能tvm团队将主要精力放到了autotvm,以框架整体的优化上(毕竟这部分才是tvm的特点呀),tvm的单纯量化效果并不理想,不仅精度有所下降,正常的,但是速度还有可能会变慢。这点还有待我自己亲自去验证:
TVM8bit测试
不过再配合上优秀的AutoTVM,这些都不是问题了。
当然,随着TVM的不断发展,相信TVM也会逐渐把量化这块,不仅是精度速度的提升,更是针对更多bit情况的支持。
TVM量化原理介绍
TVM的量化总体可以分为三个阶段:
Annotation:annotation会将TVM原本的pass进行重写,根据不同算子(var)类型插入伪量化
Calibration:熟悉量化的同学应该都知道,weights的量化所需要的的(f_min, f_max)并不会变,就直接求当前张量中的最大最小值。但是activation的量化(f_min, f_max)是需要随着训练样本的变化不断维护一个整体的值得,就像bn层scale和bias一样,一般的方式是通过exponential moving averages(EMA),而calibration的作用就是调整这个(f_min, f_max)
Realization:这个就非常好理解了,根据伪量化训练得到的参数,进行实质的量化过程
直观一点的看TVM整个量化流程的话,整体还是延续了tensorflow伪量化的路线,为pass中每一个中间var插入一个伪量化节点,而具体伪量化的方法与tensorflow稍有差异,tensorflow跑的是非对称量化,而TVM目前默认跑的是对称量化。
对比看下tensorflow量化与TVM量化的公式:
Tensorflow
TVM
让我们给他转换一下:
这样看上去是不是就舒服多了,其实他们做的都是同样的事情,将从fp32到int8的误差,包括rounding的误差及clamp的误差,在训练过程中即考虑进去,只不过确实对称量化会看上去有点膈应。
上图是TVM为conv2d算子插入伪量化的示意图,需要注意的是,
-
TVM插入伪量化的时候是要对input,weights,以及activation进行区分的,这也对应了我前面所说的,这两个的参数优化是不同的。
-
由于伪量化无法拿到实际跑得模型的数据分布和数据类型的,具体要等到真正跑的时候才知道,所以到时候会不会有溢出的风险伪量化是不知道的,这是非常危险的。事实上,真正成熟的量化算法,都是要对量化过程中每个量化出来的张量进行一个缩放,保证不会有溢出的风险。
-
上图就是TVM量化的实际操作过程,首先根据模型和要部署的硬件,选择要量化的ops,也就是Topology,以及量化的目标bit数,这里要量化到几bit并不是人为确定(当然肯定也可以人为写死),而是一个不断搜索的过程;然后根据一个小的calibration的图片集获得threshold,将threshold-bit-topology确定的量化模型去测试下,然后进行下一个标定循环 。
-
下面来聊聊伪量化在训练标定过程中都要解决哪些问题。一般认为量化的损失来自于两个方面:
- 取整损失,例如r = [6.8, 7.2, -0.6], scale = (7.2+0.6)/127 = 0.061417, q1 = 7.2/scale = 117.23,那么他的量化值就是117,有了0.23的损失
- 截断损失 ,因为scale是取最优区间,那么边界的点势必会有超过最大量化值得情况,那么就要截断到最大量化值,就有了截断损失
那么就要针对这两种损失,将这两种损失都加入到伪量化中去,在训练阶段就将误差消化掉。我们看下TVM的伪量化代码如何实现:
@_op.register_compute("relay.op.annotation.simulated_quantize")
def simulated_quantize_compute(attrs, inputs, out_type):
"""Compiler for simulated_quantize."""
assert len(inputs) == 4
assert attrs.sign
assert attrs.rounding == "round"
data, scale, clip_min, clip_max = inputs
if attrs.kind == QAnnotateKind.IDENTITY:
return [topi.identity(data)]
scaled_data = topi.divide(data, scale)
# simulate saturated error
clipped_data = topi.maximum(topi.minimum(scaled_data, clip_max), clip_min)
# simulate rounding error
round_data = topi.round(clipped_data)
# recover data
rdata = topi.multiply(round_data, scale)
return [rdata]
TVM量化代码解析
TVM的量化非常方便,即插即用,前面说过,TVM量化的话就是使用加入了伪量化后的pass替代原来的pass,我们看一个官方提供的例子:
def test_mul_rewrite():
"""a test case where rhs of mul is not constant"""
data = relay.var("data", shape=(1, 16, 64, 64))
multiplier = relay.sigmoid(relay.var("data", shape=(1, 16, 1, 1)))
conv = relay.nn.conv2d(data, relay.var("weight"),
kernel_size=(3, 3),
padding=(1, 1),
channels=16)
act = relay.nn.relu(data=conv)
quantize_and_build(act * multiplier)
pool = relay.nn.global_avg_pool2d(data=act)
quantize_and_build(act * pool)
入口就是函数:
def quantize_and_build(out):
f = relay.Function(relay.analysis.free_vars(out), out)
mod, params = testing.create_workload(f)
with relay.quantize.qconfig(skip_conv_layers=[]):
qmod = relay.quantize.quantize(mod, params)
relay.build(qmod, "llvm", params=params)
return qmod
可以看到这里,调用的就是relay.quantize.quantize函数,因为这个函数实在太长了,我就只是放上来主体部分,
1. mod = prerequisite_optimize(mod, params)
2. calibrate_pass = tvm.transform.module_pass(
calibrate(dataset), opt_level=1,
name="QuantizeCalibrate")
quant_passes = [partition(),
annotate(),
calibrate_pass]
if not current_qconfig().do_simulation:
quant_passes.append(realize())
quant_passes.append(_transform.FoldConstant())
quantize_seq = tvm.transform.Sequential(quant_passes)
with tvm.transform.PassContext(opt_level=3,
required_pass=["QuantizeAnnotate",
"QuantizeCalibrate",
"QuantizeRealize"]):
3. with quantize_context():
mod = quantize_seq(mod)
4. q_cfg = current_qconfig()
assert q_cfg.partition_conversions in ['disabled', 'enabled', 'fully_integral']
if q_cfg.partition_conversions != 'disabled':
quantized_dtypes = {q_cfg.dtype_input, q_cfg.dtype_weight, q_cfg.dtype_activation}
ensure_fully_integral = q_cfg.partition_conversions == 'fully_integral'
return partition_conversions(mod, quantized_dtypes, ensure_fully_integral)
从代码中可以看到,TVM量化首先需要做的就是
标号1,就是图优化部分,具体做哪些图优化就可以自己选了,比如算子融合,常量折叠这些。(顺便说下,关于TVM的下一篇文章应该就是图优化的部分了哦,先从基于支配树的算子融合开始)
接下来,就是
标号2那里定义,整个量化的步骤,包括定义quant_passes,如果发现config中设置不需要伪量化,也就是现在是inference阶段了,那就把realize加进去,否则只需要annotate及calibrate去优化量化参数就够了。
标号3就是说,现在开始做量化了,将一个fp32的inference graph转成int类型的inference graph,具体可以参照第一张图,没什么好说的。
标号4部分,意思就是,把realize的graph,或者说对于一个op的前向推断的步骤分成前中后三部分:比如conv2d,input_quantization -> input_quantization*weight_quantization(core function) -> ouput_dequantization,之所以要每一个算子计算完之后都要dequant回去,是因为很有可能某些算子没量化呀,你不还得用fp32嘛 😦
不过最优解肯定是全部都量化掉,直接int32跑到底,所以TVM搞了个参数ensure_fully_integral来保证所有的算子都被量化了
本文所有内容都是基于自己理解所写,肯定有不对的地方,欢迎大家交流讨论