一些有用的下载

1、protobuf https://github.com/protocolbuffers/protobuf/releases 安装步骤: https://github.com/protocolbuffers/protobuf/blob/master/src/README.md 2、c...

2018-11-17 17:49:40

阅读数:42

评论数:0

编程错误总结

1、char*类型不能进行直接用“=”赋值,需要用sprintf来进行赋值操作; 2、类构造函数中,需要按照类中成员变量声明顺序依次进行初始化,否则会出现警告; 3、对vector数组进行遍历时,如果是基于vector数组大小进行loop,需要使用static_cast<...

2018-11-09 08:56:20

阅读数:30

评论数:0

caffe bug && some useful library

1、relocation R_X86_64_32S against `.rodata' can not be used when making a shared object; recompile with -fPIC #2171 解决方案: https://github.com/BVLC/c...

2018-11-07 22:55:35

阅读数:44

评论数:0

CMakeLists用法笔记

做一个学习笔记,仅仅是笔记而已。 1、设置编译选项: 这里可以利用CMAKE_C_FLAGS(增加C编译选项)和CMAKE_CXX_FLAGS(增加C++编译选项),可以设置的编译选项有: 1) -fPIC     fPIC的全称是 Position Independent Code, 用...

2018-10-24 21:58:58

阅读数:69

评论数:0

opencv api 测试记录

    1、仿射变换warpAffine对三通道图像进行变换: #include <iostream> #include <opencv2/opencv.hpp> int main(int arc, ch...

2018-10-23 13:42:04

阅读数:69

评论数:0

ncnn之yolov2

    ncnn框架是一个非常好的深度学习部署框架,基于ncnn,我们可以很方便的对训练好的深度学习模型部署到手机(Android或Ios)、linux和PC端上,而且ncnn还提供了各个框架模型转换成ncnn可读形式模型的工具,如图1所示。                         ...

2018-10-21 19:20:13

阅读数:231

评论数:0

机器学习之Logistics Regression

    1、线性分类器     在说线性分类器之前,先思考一下我们平时是如何来做决策的。我们做任何决策之前,我们都会考虑很多因素,这里我们以决策树中经常举的相亲例子来进行说明。     假设,现在有人说要给你介绍个女朋友,你会问他,女孩多大了?性格如何?长得好看吗?我们会考虑三个因素:年龄是否...

2018-10-04 12:22:07

阅读数:69

评论数:0

机器学习之由线性回归到梯度下降法

    一谈到机器学习,我们可能会思考,什么是机器学习,到底学习什么?     一、机器学习学什么?     我们先来看一张图,如图1所示,这张图来自Andrew Ng机器学习课程第二章,什么意思?我总结一下:     1) 机器学习目的:建立输入(x)到输出(y)之间的映射关系(h); ...

2018-10-03 20:17:55

阅读数:72

评论数:0

机器学习之KNN:最简单的分类器

    1、KNN算法原理     K近邻分类器可以说是目前为止最简单的机器学习和图像分类算法。实际上,由于其过于简单,算法不“学习”任何东西,取而代之的是这个算法直接依赖于特征向量之间的距离。     具体来说,就是将所有数据样本的特征向量直接存储下来,然后基于某种相似性度量准则,查询与当前...

2018-09-29 20:58:53

阅读数:232

评论数:0

MILN:多层在位学习网络

    MILN(multilayer In-place Learning Network)应该是继LCA算法提出后,翁巨扬教授提出的第一个发育网络(developmental network),旨在提出一种通用的在位学习( In-place Learning)网络来模拟大脑皮层抽取特征。在位学习...

2018-09-29 11:42:46

阅读数:172

评论数:0

图像处理(十二):特征检测之SIFT

    SIFT(Scale-invariant Feature Transform)是由David Lowe 提出的一种具有平移、缩放、旋转等不变性的局部特征提取方法。     1、高斯金字塔           人与物体之间距离由近及远过程中,物体在视网膜上对应成像规律为:尺寸由大到小,物...

2018-09-21 16:23:21

阅读数:48

评论数:0

vs2015配置腾讯开源框架ncnn

    腾讯ncnn官方github下载地址为:https://github.com/Tencent/ncnn     github上有一个配置好的vs2015版本ncnn:https://github.com/guozhongluo/ncnn-vs2015-examples-demo    ...

2018-09-20 00:08:39

阅读数:221

评论数:0

图像处理(十一):常用特征三剑客Haar、LBP和HOG

    最常用到的三种特征分别为Haar特征、LBP特征及HOG特征,三种特征描述了三种不同的局部信息:     1) Haar描述的是图像在局部范围内像素值明暗变换信息;     2) LBP描述的是图像在局部范围内对应的纹理信息;     3) HOG描述的则是图像在局部范围内对应的形状...

2018-09-17 12:49:38

阅读数:184

评论数:0

机器学习之支持向量机(support vector machine)(三):核函数、SMO及Hinge loss

    对于线性可分SVM和线性SVM而言,其实默认数据是线性可分,或近似线性可分的。但是实际数据大多数为线性不可分的,因此,为了能够对数据进行准确划分,需要引入一些 tricks(kernal tricks),这就是核函数要做的事情,通过将低维数据映射到维核空间,使得数据在高维核空间可分,进而实...

2018-09-16 23:03:12

阅读数:56

评论数:0

机器学习之支持向量机(support vector machine)(二):线性SVM

   一、带松弛因子的SVM     通常情况下,存在以下两种情况:    1、分类完全正确的超平面不一定是最好的;    2、样本数据不是线性可分的,类别之间数据存在重合;(Pattern Recongnition and Machine Learning)    如图1所示,如果按照完...

2018-09-14 17:32:03

阅读数:47

评论数:0

机器学习之支持向量机(support vector machine)(一):线性可分SVM

    总结一下,不然过段时间就全忘了,加油~     1、问题描述     假设,存在两类数据A,B,如图1所示,A中数据对应于图中的实心点,B中数据对应图中的空心点,现在我们需要得到一条直线,能够将二者进行区分,这样的线存在无数条,如图1中的黑色直线所示,这些线都能够分对。       ...

2018-09-14 13:42:27

阅读数:45

评论数:0

DNN模块加载caffe训练好的SSD模型

    opencv越来越强大了,可以直接对训练好的caffe、tensorflow等框架训练好的模型进行加载,进而完成识别、检测等任务。     opencv加载caffe训练好的模型,采用readNetFromCaffe(arg1,arg2),第一个参数对应定义模型结构的prototxt文件...

2018-09-12 18:24:45

阅读数:224

评论数:0

IHDR:增量式分层判别回归

    前面已经介绍了翁巨扬教授两个心智发育框架(IHDR+WWN)的核心算法CCIPCA和CCILCA,下面就IHDR这个框架来做一下详细的介绍,主要参考资料为IHDR原始论文,以及实验室师兄们前期的工作成果。后面再说一下where-what-network系列(先立个flag,希望不是在作死)...

2018-09-11 13:09:03

阅读数:130

评论数:0

LCA(Lobe Component Analysis):叶成分分析

   前面提到的CCIPCA可以算作翁巨扬教授提出的第一个心智发育框架IHDR的核心算法,而LCA则是他现阶段提出的where-what-network框架的核心算法,也即是他提到的发育网络的“基因”组成。     CCIPCA对应于PCA(主成分分析)算法,是PCA算法的增强版,使得计算算法在...

2018-09-10 11:17:52

阅读数:160

评论数:0

C指针和数组

    C语言中,数组需要注意的地方有两点:     1、C语言中只有一维数组,数组大小必须在编译期就作为一个常数确定下来,数组中元素可以是任何类型对象,当然也可以是另外一个数组,这样,要“仿真”出一个多维数组就不是一件难事了;     2、对于一个数组,我们只能做两件事:确定数组大小,及获得...

2018-09-03 14:39:32

阅读数:19

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭