一个利用卷积运算处理图像的小工具

卷积是图像处理和深度学习的重要工具之一。说白了这里用的卷积的其实是一种矩阵的运算方式,如下图所示,对于两个矩阵做卷积运算,实际上就是对应位置的数字相乘之后加和。

请添加图片描述

在图像处理中,我们一般会将图片转为矩阵形式作为卷积运算的一项,和另取的一个长和宽较小的矩阵(成为卷积核)进行运算。由于两个矩阵的长和宽不相等,会取大矩阵中和小矩阵长宽相等的子矩阵运算(如图中依次红绿蓝橙色框),这样形成的结果依然为一个矩阵,也就是矩阵卷积运算得到的结果。

在这里插入图片描述

在卷积环节中,卷积核的选取决定了卷积的功能,举个特殊的例子,如果卷积核的选取为[ [0, 0,0], [0, 1, 0], [0, 0, 0] ],在与图片矩阵运算之后什么也不会发生,而如果选取[ [ -1, 0, 1], [0, 1, 0] , [1, 0, -1] ]就会有较好的提取边框作用。因此,卷积核的选取决定了卷积运算的效果,需要根据需求灵活选择。

想要实现卷积前需要一点点的准备工作,首先我们先创建一个能显示图像的小程序。

package com.image;

import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;

public class ImageProcessorUI {
    private Listener listener;
    private Graphics graphics;
    private JFrame jFrame;
    private final ImageProcessor imageProcessor;
    JTextField imagePath;
    int[][] image_matrix;

    public ImageProcessorUI() {
        imageProcessor = ImageProcessor.getProcessor();
    }

    public void init() {
        jFrame = new JFrame();
        jFrame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
        jFrame.setSize(850, 650);
        jFrame.setBackground(new Color(218, 209, 209));
        BorderLayout borderLayout = new BorderLayout();
        jFrame.setLayout(borderLayout);
        initPanel();
        jFrame.setVisible(true);
        jFrame.addMouseListener(listener);
        this.graphics = jFrame.getGraphics();
    }

    private void initPanel() {
        JPanel right_panel = new JPanel();
        right_panel.setPreferredSize(new Dimension(200, 600));
        right_panel.setBackground(new Color(0x6993CB));

        imagePath = new JTextField();
        imagePath.setPreferredSize(new Dimension(180, 50));
        imagePath.addActionListener(listener);
        imagePath.setText("D:\\test.png");
        right_panel.add(imagePath);

        String[] button_list = {"加入图片",  "滤镜"};
        for (String s : button_list) {
            JButton jButtons = new JButton(s);
            jButtons.setSize(100, 50);
            jButtons.setBackground(new Color(35, 191, 218, 100));
            jButtons.addActionListener(listener);
            jButtons.addMouseListener(listener);
            right_panel.add(jButtons);
        }
        jFrame.add(right_panel, BorderLayout.EAST);
    }

    public void setListener(Listener listener) {
        this.listener = listener;
    }

    public static void main(String[] args) {
        ImageProcessorUI imageProcessorUI = new ImageProcessorUI();
        Listener listener = new Listener(imageProcessorUI);
        imageProcessorUI.imageProcessor.imageProcessorUI = imageProcessorUI;
        imageProcessorUI.setListener(listener);
        imageProcessorUI.init();

    }

    public void printImage() {
        BufferedImage image = new BufferedImage(600, 600, BufferedImage.TYPE_INT_ARGB);
        Graphics image_graphics = image.getGraphics();
        for (int i = 0; i < 600; i++) {
            for (int j = 0; j < 600; j++) {
                image_graphics.setColor(new Color(image_matrix[i][j]));
                image_graphics.drawRect(i, j, 1, 1);
            }
        }
        graphics.drawImage(image, 25, 35, null);
    }


}



```java
package com.image;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.io.IOException;


public class Listener extends MouseAdapter implements ActionListener {
    ImageProcessor imageProcessor;
    ImageProcessorUI imageProcessorUI;
    boolean reMask = false;

    {
        imageProcessor = ImageProcessor.getProcessor();
    }

    @Override
    public void actionPerformed(ActionEvent e) {
        String command = e.getActionCommand();
        if (command.equals("加入图片")) {
            try {
                imageProcessor.put_into_matrix(imageProcessor.insert_image());
            } catch (IOException ex) {
                ex.printStackTrace();
            }
            imageProcessorUI.printImage();
        } else if (command.equals("滤镜")) {
//            int[][] kernel = {{-1, 0, 1}, {0, 1, 0}, {1, 0, -1}};
            int[][] kernel = {{-1, -1, -1, -1, 0}, {-1, -1, -1, 0, 1}, {-1, -1, 0, 1, 1}, {-1, 0, 1, 1, 1}, {0, 1, 1, 1, 1}};
            imageProcessor.convolution(kernel);
            imageProcessorUI.printImage();
        }
    }

    public Listener(ImageProcessorUI imageProcessorUI) {
        this.imageProcessorUI = imageProcessorUI;
    }

}

package com.image;

import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

public class ImageProcessor {

    static final ImageProcessor imageProcessor = new ImageProcessor();
    ImageProcessorUI imageProcessorUI;

    public BufferedImage insert_image() throws IOException {
        File file = new File(imageProcessorUI.imagePath.getText());
        BufferedImage image;
        image = ImageIO.read(file);
        return image;
    }

    public void put_into_matrix(BufferedImage image) {
        int[][] image_matrix = new int[600][600];
        for (int i = 0; i < 600; i++) {
            for (int j = 0; j < 600; j++) {
                image_matrix[i][j] = image.getRGB((int) ((double) image.getWidth() / 600 * i), (int) ((double) image.getHeight() / 600 * j));
            }
        }
        imageProcessorUI.image_matrix = image_matrix;
    }


    private ImageProcessor() {
    }

    public static ImageProcessor getProcessor() {
        return imageProcessor;
    }



    public void convolution(int[][] kernel) {
        int[][] matrix = new int[600][600];
        for (int i = 0; i < 600; i++) {
            for (int j = 0; j < 600; j++) {
                matrix[i][j] = imageProcessorUI.image_matrix[i][j];
            }
        }
        int h = kernel.length;
        int w = kernel[0].length;
        for (int i = 0; i < 600 - (h - 1); i++) {
            for (int j = 0; j < 600 - (w - 1); j++) {
                int r = 0, g = 0, b = 0;
                for (int k = 0; k < kernel.length; k++) {
                    for (int l = 0; l < kernel[0].length; l++) {
                        r += kernel[k][l] * (imageProcessorUI.image_matrix[i + k][j + l] >> 16 & 0xFF);
                        g += kernel[k][l] * (imageProcessorUI.image_matrix[i + k][j + l] >> 8 & 0xFF);
                        b += kernel[k][l] * (imageProcessorUI.image_matrix[i + k][j + l] & 0xFF);
                    }
                }
                if (r > 255) r = 255;
                if (g > 255) g = 255;
                if (b > 255) b = 255;
                if (r < 0) r = 0;
                if (g < 0) g = 0;
                if (b < 0) b = 0;
                matrix[i + (h - 1) / 2][j + (w - 1) / 2] = 0xFF000000 | (r << 16) | (g << 8) | b;
            }
        }
        for (int i = 0; i < 600; i++) {
            for (int j = 0; j < 600; j++) {
                imageProcessorUI.image_matrix[i][j] = matrix[i][j];
            }
        }
    }

}


以下是该代码实现的效果图,在输入框内可以输入目标图片地址,后点击“加入图片”载入到画面上

在这里插入图片描述

后点击滤镜就可以观察到卷积之后的结果了

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我会用中文回答你的问题。 要写一个识别的卷积神经网络(CNN)来识别图像的话,需要以下步骤: 1. 收集和准备数据集:首先需要准备一个图像数据集,并将其分成训练集和测试集。数据集应包含您要识别的对象或场景的图像。 2. 构建CNN模型:可以使用Python编程语言中的深度学习框架(如TensorFlow或PyTorch)来构建CNN模型。您需要定义层数,每层的卷积核大小,激活函数,优化器等等。这需要一定的深度学习知识。 3. 训练CNN模型:使用训练集数据训练CNN模型。这将涉及将数据输入到CNN模型中,并将其与实际标签进行比较。然后,通过计算损失函数来优化CNN模型参数,使其更好地匹配标签。 4. 测试CNN模型:将测试集数据输入到训练后的CNN模型中,以验证其性能。您可以计算准确度、精确度、召回率和F1分数等指标来评估CNN模型的性能。 5. 优化CNN模型:根据测试结果对CNN模型进行优化。您可以尝试添加或删除某些层,调整参数,更改优化器或损失函数等。 需要注意的是,构建一个高性能的CNN模型需要大量的计算资源和深度学习知识。因此,您可能需要花费一些时间来学习这些概念,并使用适当的工具和资源来帮助您构建一个高性能的模型。 ### 回答2: 卷积神经网络(Convolutional Neural Network,CNN)是一种常用于图像识别任务的深度学习模型。下面我将以300字左右为您介绍如何构建一个简单的图片识别的卷积神经网络。 首先,您需要导入Python深度学习库,如TensorFlow或PyTorch。接下来,您需要准备一个包含标记好的图像数据集,其中每个图像都有对应的标签。数据集可以分为训练集和测试集。 然后,您可以开始构建卷积神经网络模型。模型可以包含多个卷积层和池化层,用于提取图像特征。您可以选择不同的卷积核大小和池化方式,根据任务的需求进行调整。 在卷积层和池化层之后,您可以添加全连接层用于分类。全连接层将提取的特征输入到神经网络中,通过多个神经元对图像进行分类。 为了提高模型的准确性,您可以在训练过程中使用反向传播算法进行权重更新。您可以定义损失函数(如交叉熵损失)来衡量模型的误差,并使用优化算法(如随机梯度下降)来最小化损失函数。 训练过程中,您可以将数据集分成小批量进行训练,这样可以更好地利用计算资源和加速训练过程。一般会迭代多个epoch,每个epoch包含多个小批量的训练。 最后,您可以使用测试集评估模型的性能。通过比较模型的预测结果和真实标签,可以计算出模型的准确率、精确率和召回率等指标。 总结来说,构建一个图片识别的卷积神经网络需要准备数据集、构建模型、定义损失函数和优化算法以及评估模型的性能。不同的任务可能需要不同的网络架构和训练方法,您可以根据具体的需求进行调整和优化。祝您成功! ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,可以用于图像识别和分类任务。下面是一个基本的图片识别的卷积神经网络模型的示例: 1. 数据准备: 首先,需要准备图像数据集作为训练数据。数据集应包含带有标签的图像样本,例如有狗和猫的图像数据集。 2. 模型构建: - 输入层:将图像的像素值作为输入。 - 卷积层:通过一系列卷积核(滤波器),对输入图像进行特征提取与转换。每个卷积核学习提取不同的特征,例如边缘、纹理等。 - 池化层:对卷积层的输出进行下采样,减少特征图维度,提取主要特征。 - 扁平层:将池化层的输出展开为一维向量,作为全连接层的输入。 - 全连接层:将扁平层的输出与权重进行矩阵乘法运算,并通过激活函数进行非线性转换。 - 输出层:经过全连接层的处理后,输出每个类别的概率或判断结果。 3. 模型训练: - 随机初始化模型的权重参数。 - 将图像数据输入模型,并计算输出结果。 - 根据输出结果与真实标签之间的差异,使用损失函数衡量模型的预测误差。 - 使用反向传播算法,根据损失函数的梯度逐层更新模型参数。 - 迭代以上步骤,直到模型收敛或达到训练次数上限。 4. 模型测试: - 使用测试数据集对训练好的模型进行性能评估,计算准确率、精确率等指标。 注意:以上是一个基本的卷积神经网络模型架构,具体的模型设计和参数设置需要根据实际问题进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值