Anomaly Detection

异常侦测

a set of training data x1 , x2 , ⋯ , xN
找到一个function detecting x是否是异常的数据
在这里插入图片描述

Applications 应用

• Fraud Detection 银行盗刷检测
• Training data: 正常刷卡行為, x: 盜刷?
• Ref: https://www.kaggle.com/ntnu-testimon/paysim1/home
• Ref: https://www.kaggle.com/mlg-ulb/creditcardfraud/home
• Network Intrusion Detection 网络入侵检测
• Training data: 正常連線, x: 攻擊行為?
• Ref: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
• Cancer Detection
• Training data: 正常細胞, x: 癌細胞
• Ref: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/home

Binary Classification?
在这里插入图片描述
在这里插入图片描述

1. With Classifier 用分类器侦测异常结果

example,
给辛普森家族任务分类,y1 =霸子 y2 =麗莎 y3 = 荷馬 y4 = 美枝

在这里插入图片描述在这里插入图片描述

输出, class y 的类别和 信心分数 c。
信心分数越高越确定, 如果信心分数对每个lable比较平均, 说明x异常
Outlook: Network for Confidence Estimation
Learning a network that can directly output confidence
Detection in Neural Networks, arXiv, 2018
在这里插入图片描述

异常侦测无法用一般的方法评估系统的好坏

如下面的例子, 100张辛普森图片和5张其他动漫人物图片进行分类。
魔法少女的某个label的信心分数0.998, 也有某些辛普森图片的confidence 特别低。

在这里插入图片描述在这里插入图片描述
λ=0.5在这里插入图片描述λ=0.8在这里插入图片描述

λ的值不同, 检测到正确的异常, 和检测错误普通图片的个数变化。
如何评估系统的好坏呢?
看用户看中异常数据的未被检测出来的权重, 还是检测错普通数据的权重。
其他评估方法
Some evaluation metrics consider the ranking
For example, Area under ROC curve

在这里插入图片描述在这里插入图片描述

To Learn More …
Learn a classifier giving low confidence score to anomaly
Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin, Training Confidence-
calibrated Classifiers for Detecting Out-of-Distribution Samples, ICLR 2018
How can you obtain anomaly?
Generating by Generative Models?
Mark Kliger, Shachar Fleishman, Novelty Detection with GAN, arXiv, 2018

2. Without Labels

对于只有training data ,没有label 的情况。里面可能隐藏异常数据。

例子, Twitch Plays Pokémon 多人同时操作同一个宝可梦的游戏

以下每个人考察2个属性的概率, 在二维平面上显示。
下面方法用高斯分布来分析。

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

μ,Σ 就是 θ, 作为fθ(x)的参数。 求 θ, 满足likelihood 最大。f(x) 均值最大

在这里插入图片描述在这里插入图片描述

可以加入其他更多属性, 求f(x)

其他方法

Auto-encoder

数据集图片编码然后解码, training data 还是可以被识别。
如果是anomaly 图片, 解码后无法生成原图片。
在这里插入图片描述

More
One-class SVM在这里插入图片描述Isolated Forest在这里插入图片描述
Ref: https://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdfRef:https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf
异常检测综述是关于在不同的研究领域和应用领域中进行研究的一个重要问题。许多异常检测技术已经具体解决了这个问题的表述。不同的因素,如数据的性质、标记数据的可用性和要检测的异常类型等,会导致异常检测问题的挑战。通常,这些因素是由应用领域决定的,需要检测哪些异常。研究人员采用了统计学、机器学习、数据挖掘、信息论、光谱理论等不同学科的概念,并将其应用于具体的问题公式。通过图2可以看到与任何异常检测技术相关的关键组件。 与关于点异常检测技术的丰富文献相比,对上下文异常检测的研究相对有限。一般来说,这类技术可以分为两类。第一类技术将上下文异常检测问题简化为点异常检测问题,而第二类技术则对数据中的结构进行建模,并使用该模型来检测异常。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Anomaly Detection_A Survey](https://download.csdn.net/download/juicymeng/10387314)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [异常检测综述(Anomaly Detection: A Survey)](https://blog.csdn.net/weixin_43883602/article/details/124472597)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值