【问题描述】
一只青蛙位于坐标轴的0点,按照以下方法跳跃:第1次向右跳 a 个单位,第2次向左跳 b 个单位,第3次向右跳 a 个单位,第4次向左跳 b 个单位,如此继续。
也就是
-
如果青蛙已经跳了偶数次(在当次跳跃之前),则它将从当前位置 x 跳跃到 x+a
-
否则,它将从当前位置 x 跳跃到 x-b
你的任务是计算青蛙在跳过 k 次之后的位置。
【输入形式】
输入的第一行为一个整数 t,表示测试数据组数。
接下来的 t 行,每行三个整数 a、b、k(1≤ a、b、k ≤109),分别表示两种跳跃的长度以及跳跃的次数
【输出形式】
输出为 t 行,每行一个整数,第 i 个整数位第 i 个测试用例的结果。
【样例输入】
6 5 2 3000 100 1 4 1 10 5 1000000000 1 6 1 1 1000000000 1 1 999999999
【样例输出】
4500 198 -17 2999999997 0 1
【思路分析】寻找规律,发现当跳的次数是偶数的时候,最后的距离是(a-b)*n/2;当跳的次数是奇数的时候,最后的距离是(a-b)*n/2 +a。
#include <iostream>
using namespace std;
int main(){
int T;
cin>>T;
while(T--){
long long int a=0;
long long int b=0;
long long int n=0;
cin>>a>>b>>n;
long long int dis=0; //注意dis的输出,有可能因为数字太大导致乱码,要用ll int
if (n%2==0){
dis = (a-b)*n/2;
}
else{
dis = (a-b)*(n/2)+a;
}
cout<<dis<<endl;
}
return 0;
}