Leetcode小白试炼(20201008 有效数独)

本文详细介绍了如何判断9x9数独的有效性,包括题目解析、个人解法及失败反思,以及高星解法的分析。个人解法通过三层遍历检查行、列和块的冲突,而高星解法将这三步合并,使用二维哈希数组一次遍历完成。两种方法都关注了时间复杂度和空间复杂度,最终实现了有效数独的验证。
摘要由CSDN通过智能技术生成

一、题目

1. 题目描述

判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。

  • 数字 1-9 在每一行只能出现一次。
  • 数字 1-9 在每一列只能出现一次。
  • 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。

在这里插入图片描述
上图是一个部分填充的有效的数独。数独部分空格内已填入了数字,空白格用 ‘.’ 表示。

2. 示例

示例1:
输入:
[
[“5”,“3”,".",".",“7”,".",".",".","."],
[“6”,".",".",“1”,“9”,“5”,".",".","."],
[".",“9”,“8”,".",".",".",".",“6”,"."],
[“8”,".",".",".",“6”,".",".",".",“3”],
[“4”,".",".",“8”,".",“3”,".",".",“1”],
[“7”,".",".",".",“2”,".",".",".",“6”],
[".",“6”,".",".",".",".",“2”,“8”,"."],
[".",".",".",“4”,“1”,“9”,".",".",“5”],
[".",".",".",".",“8”,".",".",“7”,“9”]
]
输出: true
示例2:
输入:
[
[“8”,“3”,".",".",“7”,".",".",".","."],
[“6”,".",".",“1”,“9”,“5”,".",".","."],
[".",“9”,“8”,".",".",".",".",“6”,"."],
[“8”,".",".",".",“6”,".",".",".",“3”],
[“4”,".",".",“8”,".",“3”,".",".",“1”],
[“7”,".",".",".",“2”,".",".",".",“6”],
[".",“6”,".",".",".",".",“2”,“8”,"."],
[".",".",".",“4”,“1”,“9”,".",".",“5”],
[".",".",".",".",“8”,".",".",“7”,“9”]
]
输出: false
解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。
但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
说明:
一个有效的数独(部分已被填充)不一定是可解的。
只需要根据以上规则,验证已经填入的数字是否有效即可。
给定数独序列只包含数字 1-9 和字符 ‘.’ 。
给定数独永远是 9x9 形式的。

3. 题目解析

接触的第一道中等难度题,第一思路是借助HashMap的两层遍历,并且要进行三次两层遍历:
第一次:判断行冲突。
第二次:判断列冲突。
第三次:判断块冲突。

二、解法

1. 个人解法

(1)代码

/**
 * 第一次:块儿判断出错
 */
public class Arrayshudu {
    boolean isBalidSudoku1(char[][] board) {
        Map<Character, Integer> map = new HashMap<>();
//        进行行判断
        for (int i = 0; i < 9; i++) {
//            每行结束都要重置HashMap
            map.clear();
            for (int j = 0; j < 9; j++) {
//               有重复元素,那就返回false
                if (map.containsKey(board[i][j])) {
                    return false;
//                    点元素排除,其余非重复元素放HashMap
                } else if(board[i][j]!='.'){
                    map.put(board[i][j], 1);
                }

            }
        }
//        进行列判断
        for (int k = 0; k < 9; k++) {
//            每列结束都要重置HashMap
            map.clear();
            for (int l = 0; l < 9; l++) {
//               有重复元素,那就返回false
                if (map.containsKey(board[l][k])) {
                    return false;
//                    点元素排除,其余非重复元素放HashMap
                } else if(board[l][k]!='.') {
                    map.put(board[l][k], 1);
                }

            }
        }
        int flag = 0;
        int heng = 0;
        int shu = 0;
//        flag表示块
        while (flag < 9) {
//            每块判断结束后要重置HashMap
            map.clear();
//            遍历块内元素
            for (int i = heng; i < heng + 3; i++) {
                for (int j = shu; j < shu + 3; j++) {
 //               有重复元素,那就返回false
                    if (map.containsKey(board[i][j])) {
                        return false;
//                    点元素排除,其余非重复元素放HashMap
                    } else if(board[i][j]!='.') {
                        map.put(board[i][j], 1);
                    }
                }
            }
//            找下一个块的起点
            heng = (heng + 3) % 9;
            shu = (shu + 3) % 9;
            flag++;
        }
        return true;
    }

(2)失败反思

个人解法说明: 进行三次数独的整体遍历
第一次:遍历判断有没有行冲突。
第二次:遍历判断有没有列冲突。
第三次:遍历判断有没有块冲突。
失败原因:
进行块冲突判断的过程中,一个块遍历结束后,寻找下一个块的起点,这个步骤出错。
反思:
在做题过程中,应该多加一些中间过程输出,来避免出错,最后提交的时候去掉即可。

(3)改进

旧版找块起点代码:

//            找下一个块的起点
            heng = (heng + 3) % 9;
            shu = (shu + 3) % 9;

执行过程中,其实一直在判断第一块的重复情况,起点并未发生变化。
修改后:

 System.out.println(heng+"||||"+shu);
  heng = (flag + 1) / 3*3;
  shu = (shu + 3) % 9;
       

运行结果:
在这里插入图片描述
从运行结果可看出,修改后的代码,在运行过程中,每个块的起点元素可以正确被寻到。

(4)算法分析

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

(5)提交截图

第一次失败截图:
在这里插入图片描述
第二次成功截图:
在这里插入图片描述

2. 官网高星解法

(1)三合一

解法分析

分三次遍历,只是为了写代码的时候思路清晰,不容易出错,高星解法就是把三次遍历给整合为一了。由于在一次遍历里解决,不好进行HashMap的重复利用,因此需要申请很多的HashMap。
可以借鉴的操作:
利用Vlaue,在进行HashMap插入的同时判断是否存在相同的Key:

 rows[i].put(n, rows[i].getOrDefault(n, 0) + 1);

这样通过value值就可以知道该元素是否重复。

代码
 /**
     * 高星解法,二维哈希数组,一次双层遍历搞定
     *
     * @param board
     * @return
     */
    boolean isBalidSudoku3(char[][] board) {
        // init data
        HashMap<Integer, Integer>[] rows = new HashMap[9];
        HashMap<Integer, Integer>[] columns = new HashMap[9];
        HashMap<Integer, Integer>[] boxes = new HashMap[9];
        //因为放到一次遍历里实现,不好清空hashmap,所以直接多申请点。
        for (int i = 0; i < 9; i++) {
            rows[i] = new HashMap<Integer, Integer>();
            columns[i] = new HashMap<Integer, Integer>();
            boxes[i] = new HashMap<Integer, Integer>();
        }
        // validate a board
//        每遍历到一个新元素,判断下三个hashmap里是否发生重复
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 9; j++) {
                char num = board[i][j];
                if (num != '.') {
                    int n = (int) num;
//                    为了控制子数独
                    int box_index = (i / 3) * 3 + j / 3;
                    // keep the current cell value
//                    getOrDefault(a,b)若map里存在key=a,则返回对应value,若不存在a,则返回b
//                    put的同时判断了是否有重复元素
                    rows[i].put(n, rows[i].getOrDefault(n, 0) + 1);
                    columns[j].put(n, columns[j].getOrDefault(n, 0) + 1);
                    boxes[box_index].put(n, boxes[box_index].getOrDefault(n, 0) + 1);
                    // check if this value has been already seen before
                    if (rows[i].get(n) > 1 || columns[j].get(n) > 1 || boxes[box_index].get(n) > 1)
                        return false;
                }

            }
        }
        return true;
    }
算法分析

高星解法后面给出的时间复杂度和空间复杂度都是 O ( 1 ) O(1) O(1),可能是考虑到n=9,所以都是常数级操作。
但是毕竟进行了一次两层遍历,我认为真正的时间复杂度应该为: O ( n 2 ) O(n^2) O(n2),申请了3N个长度为N的HashMap,因此空间复杂度应该为 O ( n 2 ) O(n^2) O(n2)

提交截图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值