医用视觉——概念简析
笔者并非医学专业,受挚友之托写一篇博客记录下我目前接触过的,可能在医用视觉中起到些许作用的视觉技术。因为本博客中的大量内容包含笔者的个人倾向,且笔者能力所限而缺少医疗知识,如果本博客误导了您,请见谅。
1. 计算机视觉和机器视觉的区别
计算机视觉不等于机器视觉,事实上,这两者之间有很大差异。计算机视觉是基于数学角度,从纯数据方向对图像进行分析,最终目的是寻找数学逻辑。而机器视觉则是源于工业考量,以信息作为最终导向。换而言之,计算机视觉寻找的是普世数学逻辑,而机器视觉则是寻找特解。
举例来说,如何分析一辆小车上的摄像头的视觉信息,让它可以正确的指引小车完成从电梯到宿舍的运动属于机器视觉,而分析数万张被不同结构,摄像头位置/像素不同的小车摄像头图像,分析出全国大学生宿舍从电梯到宿舍的普遍规律,让一辆小车可以试图在另一个校区寻找去电梯的路,则属于计算机视觉。引用前辈的话就是
机器视觉的研究对象主要是指工业领域的视觉研究,例如自主机器人的视觉,用于检测和测量的视觉。
机器视觉是配备有感测视觉仪器的检测机器,其中光学检测仪器占有比重非常高,可用于检测出各种产品的缺陷,或者用与判断并选择出物体等。主要大量应用于工厂自动化检测及机器人产业等。侧重的是视觉感官上去做人做不到的工作,测量定位这些,与光源镜头自动化控制相关
计算机视觉的研究对象主要是映射到单幅或多幅图像上的三维场景,例如三维场景的重建。计算机视觉的研究很大程度上针对图像的内容。
计算机视觉是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。侧重的是利用计算机分析得到的图像,往往是对图像里面信息的一个分析处理。
本文在此仅叙述计算机视觉内容。在医疗图像方面,计算机视觉的主要运用包括:图像分类,对象检测,语义分割,实例分割。
2. 图像分类
输入:输入是由N个图像组成的训练集,共有K个类别,每个图像都被标记为其中一个类别。
评价:预测一组新图像的类标签,评估分类器的性能,我们用分类器预测的类别标签与其真实的类别标签进行比较。
1. KNN
若西瓜可以用 水分,含糖量,体积 作为特征值衡量它是哪个品种
那么把已知的三种西瓜数据画在三维图上,对于新的数据 (x,y,z) 只需要看它在图上最近的K个邻居,属于哪种西瓜更多就好了。
KNN有各种改进,比如加权,让距离更近的点权重更高,或者把欧几里得距离改成闵可夫斯基距离。
当然,这个算法很low,首先西瓜用这三个量评估本身就没什么道理,况且这三者对西瓜类别的影响必然不同却被当成相等。以及每一个数据都要进行O(N)的运算,这对于大训练集来说不可接受。