傅里叶变换(三)

本文介绍了傅里叶变换中的Dirichlet充分条件,包括连续性与有限个第一类间断点的要求,并通过矩形波函数的例子展示了即使不满足所有条件也能展开为傅里叶级数。文中还探讨了矩形波的傅里叶级数表示及其收敛性,以及正弦级数的概念。
摘要由CSDN通过智能技术生成

〇、前言( × \times × 3)

我突然发现 D i r i c h l e t \rm {Dirichlet} Dirichlet 充分条件好像没必要说一整篇,那我就来说一下他的证明吧,结尾还会利用前一篇和本篇的知识来逼近一个周期函数:方形波,感觉还挺有意思的。我写证明步骤纯属是觉得有意思,还有记录学习的进度。如果你是来看我的博文学习的,那你完全可以忽略证明步骤,直接看定理内容。好了该说的说完了。

那么,开始!

六、 D i r i c h l e t \rm {Dirichlet} Dirichlet 充分条件

直接上它的内容:

狄利克雷条件(Dirichlet Conditions)

(1 )在一周期内,连续或只有有限个第一类间断点

(2)在一周期内,极大值和极小值的数目应是有限个

那么 f ( x ) f(x) f(x) 的傅里叶级数收敛,并且,

  1. x x x f ( x ) f(x) f(x) 的连续点时,级数收敛于 f ( x )   ; f(x)\ ; f(x) ;
  2. x x x f ( x ) f(x) f(x) 的间断点时,级数收敛于 1 2 [ f ( x − ) + f ( x + ) ]   . \frac 12[f(x^-)+f(x^+)]\ . 21[f(x)+f(x+)] .

狄利克雷条件是一个信号存在傅里叶变换的充分不必要条件

f ( x − ) f(x^-) f(x) f ( x + ) f(x^+) f(x+) 分别指,函数在 x x x 处的 左极限右极限 。)

我把关键内容加粗了,那么我们先来看第一个:

在一周期内,连续或只有有限个第一类间断点

什么是第一类间断点呢?
f ( x ) = { x − 2 x < 0 − x + 3 x ≥ 0   . (1) f(x)=\left\{ \begin{aligned} &x-2&x<0\\ \\ &-x+3&x\ge0 \tag{1} \end{aligned} \right.\ . f(x)=x2x+3x<0x0 .(1)
例如这个函数,他在 x = 0 x=0 x=0 处就有一个第一类间断点。
即使我还没有给出定义相信大家对于第一类间断点也有了一个很清晰的认识了吧
对,就是初中处理分段函数时出现的奇妙现象。

现在大家对于第一条也许还有一个问题:

既然存在第一类间断点,那么是不是还有第二类间断点呢?

是的,第二类间断点是存在的,例如这个函数:
f ( x ) = sin ⁡ 1 x (2) f(x)= \s

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值