大家好,我是 同学小张,+v: jasper_8017 一起交流,持续学习AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,订阅我的大模型专栏,共同学习和进步。
欢迎订阅专栏,即将涨价!
大型语言模型(LLMs)在处理复杂问题时,常因“过度思考”生成冗余步骤,导致计算成本飙升。最新论文《Stop Overthinking》提出高效推理技术,通过三大方法论让AI“少走弯路”,在速度与准确率间找到最优解。
1. 问题本质:为何AI会“过度思考”?
-
链式推理(CoT)的代价:生成详细步骤提升准确性(如数学题正确率提升20%),但推理时间和成本翻倍。
-
冗余陷阱:简单问题(如“0.9和0.11哪个更大?”)可能生成