大家好,我是同学小张,日常分享AI知识和实战案例 欢迎 点赞 + 关注 👏,持续学习,持续干货输出。 +v: jasper_8017 一起交流💬,一起进步💪。 微信公众号也可搜【同学小张】 🙏 本站文章一览: 前面我们学习了RAG的基本框架并进行了实践,我们也知道使用它的目的是为了改善大模型在一些方面的不足:如训练数据不全、无垂直领域数据、容易出现幻觉等。那么如何评估RAG的效果呢?本文我们来了解一下。 文章目录 推荐前置阅读 0. RAG效果评估的必要性 1. RAG评估方法 1.1 人工评估 1.2 自动化评估 1.2.1.1 LangSmith 1.2.1.2 Langfuse 1.2.1.3 Trulens 1.2.4 RAGAS 2. 常用评估指标 2.1 Trulens 的RAG三元组指标 2.2 RAGAS的四个指标 2.3 其它指标 3. 总结 参考 推荐前置阅读 【AI大模型应用开发】3. RAG初探 - 动手实现一个最简单的RAG应用</