同学小张
持续深入学习编程技术(C++ / Python等),系统探索AI大模型应用开发,坚持持续分享。
希望与大家一起讨论交流,共同进步。
展开
-
AI推理模型的“思维链”:真的可信吗?最新研究揭示真相
在人工智能技术快速发展的今天,推理模型(Reasoning Models)正成为行业焦点,如DeepSeek等。这些模型不仅能给出答案,还能通过类似人类解题过程的"思维链"(Chain-of-Thought)展示其推理路径。但这些看似清晰的推理步骤,真的反映了AI的真实思考过程吗?真的可信吗?原创 2025-05-19 10:22:06 · 11 阅读 · 0 评论 -
别再让AI“想太多”!综述三大高效推理方法论,速度与准确率兼得
大型语言模型(LLMs)在处理复杂问题时,常因“过度思考”生成冗余步骤,导致计算成本飙升。最新论文《Stop Overthinking》提出高效推理技术,通过三大方法论让AI“少走弯路”,在速度与准确率间找到最优解。原创 2025-04-24 07:00:00 · 41 阅读 · 0 评论 -
长推理(Long Reasoning)成本太高?7大压缩技术帮你省下一半Token!
本文系统梳理了近期7篇针对长思维链压缩的前沿研究工作,重点分析其核心方法、创新点及实验结果,为降低推理成本提供技术参考。原创 2025-04-22 07:00:00 · 94 阅读 · 0 评论 -
MARS框架:用多智能体+苏格拉底对话自动优化AI提示词
现有提示词自动优化技术却面临两大挑战:模板僵化和搜索低效。最新研究提出的MARS框架,通过多智能体协作与苏格拉底式对话,刷新了提示词自动优化技术的性能天花板!原创 2025-04-15 07:00:00 · 870 阅读 · 0 评论 -
【AI大模型科普】多模态检索 与 跨模态检索 的理解与区别
在信息爆炸的时代,传统的单一模态检索方式已难以满足用户日益复杂的需求。多模态检索和跨模态检索应运而生,它们为用户提供了更丰富、更精准的检索体验。原创 2025-03-13 07:00:00 · 710 阅读 · 0 评论 -
MCP:昙花一现还是未来标准?
MCP:昙花一现还是未来标准?翻译 2025-03-14 09:59:38 · 136 阅读 · 0 评论 -
Manus开源替代品梳理:五大项目对比与选型指南 ,建议收藏
本文全面梳理Manus开源生态中的五大项目,涵盖技术架构、应用场景与选型指南。原创 2025-04-08 07:00:00 · 884 阅读 · 0 评论 -
让AI对话更“长情”,微软清华团队提出记忆优化新框架 - SECOM
微软亚洲研究院与清华大学联合团队最新提出的SECOM框架,通过**分段式记忆构建**与**智能去噪检索**两大核心技术,在长期对话场景中实现了突破性进展。原创 2025-04-10 07:00:00 · 56 阅读 · 0 评论 -
六种开源智能体通信协议对比:MCP、ANP、Agora、agents.json、LMOS、AITP
本文为六大开源智能体通信协议的核心对比分析原创 2025-03-21 07:00:00 · 2229 阅读 · 0 评论 -
Manus平替 - 只用三小时复刻出来的开源OpenManus上手效果与原理拆解
几个零零后,只用了三小时就复刻出了 Manus,并开源了,项目名称叫 OpenManus。其实现的能力虽然无法与真正的 Manus 相比,但从其实现思路可学习到 Manus 类型智能体应用的实现思路。原创 2025-03-18 07:00:00 · 1945 阅读 · 0 评论 -
MetaGPT核心模块:Data Interpreter 上手实战 - 数据分析和可视化(附运行过程详解)
上篇文章我们详细解读了 DataInterpreter 的实现原理(论文),本文将开始上手实操,开始写代码用上 DataInterpreter。从最简单的例子开始,先给大家看下其运行过程,看下DataInterpreter是如何自动拆解任务,完成任务的,帮助大家构建直观认识。原创 2025-03-25 07:00:00 · 109 阅读 · 0 评论 -
MetaGPT核心模块:Data Interpreter 论文解读 - 25%性能提升!让AI自动完成复杂工作流(附完整代码)
MetaGPT的Data Interpreter已经出了一段时间了,适逢最近 Manus 又大火,作为多智能体应用中最重要的一个能力(规划、执行),Data Interpreter 值得研究一下。本文从论文角度,先来解读一下 Data Interpreter的实现原理。原创 2025-03-22 07:00:00 · 103 阅读 · 0 评论 -
客户端创建实战 - Claude MCP 大模型上下文协议入门实战
上篇文章,我们从零到一利用MCP协议,创建了一个MCP服务端,并利用 Claude 客户端连接了服务端完成了服务中Tool的调用。今天,这篇文章,我们继续学习MCP协议,利用MCP协议从零到一写一个客户端,并将客户端与服务端连接,调用服务端的Tool。原创 2025-03-11 07:00:00 · 1056 阅读 · 0 评论 -
【RAG优化】一文整理20多种目前常用的 RAG 创新方法
搜罗了一下目前常用的和比较前沿的RAG方法和研究,20多种。原创 2025-03-12 07:00:00 · 368 阅读 · 0 评论 -
Deepseek本地部署教程,带UI(普通个人笔记本,无GPU,纯CPU也可使用)
为了确保能够稳定地使用DeepSeek-R1,本地部署无疑是一个绝佳的选择。接下来,我们将详细介绍DeepSeek-R1的本地部署教程。原创 2025-02-06 11:43:12 · 2649 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(7)
来看一下目前比较火的Agent框架 --- MetaGPT 是如何实现 AI 控制 手机的。从中学习其实现原理,懂了原理,其它框架也可以复刻这种操作。本文我们继续深入解读源码,看 Android 助手Agent的执行阶段Action的实现。原创 2024-12-30 23:53:24 · 211 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(6)
来看一下目前比较火的Agent框架 --- MetaGPT 是如何实现 AI 控制 手机的。从中学习其实现原理,懂了原理,其它框架也可以复刻这种操作。本文我们继续深入解读源码,看 Android 助手Agent的自动化动作Action的实现。原创 2024-12-10 07:00:00 · 220 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(5)
看一下目前比较火的Agent框架 --- MetaGPT 是如何实现 AI 控制 手机的。从中学习其实现原理,懂了原理,其它框架也可以复刻这种操作。本文我们继续深入解读源码,看 Android 助手Agent的相关动作Action的实现。原创 2024-11-20 07:00:00 · 247 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(4)
MetaGPT 是如何实现 AI 控制 手机的。从中学习其实现原理,懂了原理,其它框架也可以复刻这种操作。本文我们继续深入解读源码,看 Android 助手Agent的相关动作Action的实现。原创 2024-11-07 07:00:00 · 217 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(3)
本文我们继续深入,解读源码,先来看 Android 助手Agent的实现:Role - AndroidAssistant。原创 2024-10-21 07:00:00 · 352 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(2)
我们从零开始完成了整体环境的搭建,将示例项目运行了起来,直观感受了其工作流程。让我们继续深入,从总体代码框架开始,解读代码!原创 2024-10-17 07:00:00 · 297 阅读 · 0 评论 -
【AI+手机】如何利用GPT实现Android软件自动化交互?全面解读MetaGPT Android助手实现原理(1)
今天,我们来看一下目前比较火的Agent框架 --- MetaGPT 是如何实现 AI 控制 手机的。从中学习其实现原理,懂了原理,其它框架也可以复刻这种操作。原创 2024-10-09 07:00:00 · 720 阅读 · 3 评论 -
【AI大模型应用开发】RAG-Fusion框架:忘掉 RAG,未来是 RAG-Fusion
RAG目前很火,但是也有一些不足的地方。有不足就有改进方法。本文我们来看一个方法:RAG-Fusion,理解其原理,并看一下其实现源码。原创 2024-09-24 07:00:00 · 530 阅读 · 0 评论 -
【AI+编程】详解AI辅助编程背后的实现原理 - 以GitHub Copilot为例
目前市面上辅助编程的工具很多,也已经逐步进入了程序员们的工作当中,为程序员编程提供了便利。其中以 GitHub Copilot 工具为最,即使要付费使用,也吸引了大量的用户,可见AI辅助编程深受大家的喜爱和期待。本文以 GitHub Copilot 为例,探索其背后的实现原理。原创 2024-09-19 07:00:00 · 821 阅读 · 0 评论 -
【AI Agent系列】【源码实战】CodeAct - 使用AgentScope完整实现 - 代码使LLM Agent更强大高效灵活
CodeAct 让大模型根据任务生成可执行代码来将所有工具的调用统一到一个环境中,与Python解释器集成,自动执行代码动作,并在多轮交互中根据新观察动态修改先前动作或发出新动作,大大提升 Agent 与环境之间的交互能力和灵活性。本文我们来使用AgentScope框架来完整实现一遍,从而对CodeAct有一个更具体和深入的认识。原创 2024-09-12 07:00:00 · 655 阅读 · 1 评论 -
【AI Agent系列】【论文学习】CodeAct - 代码使LLM Agent更强大高效灵活
CodeAct 核心提供了一种思想,用代码来进行智能体-环境的交互(例如工具调用),提高效率和通用性。CodeAct 的行动空间自然地支持搜索、记忆等过程,例如记忆通过创建一个数据库进行实现。原创 2024-09-03 07:00:00 · 438 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】可视化(WebUI)模块更新了
前段时间我们介绍过AgentScope的日志模块和可视化模块,四个月过去了,AgentScope在WebUI方面又有了新的进展,今天我们就来系统学习一下AgentScope的WebUI模块。原创 2024-08-27 07:00:00 · 290 阅读 · 0 评论 -
【RAG优化】你的RAG效果为什么不好?如何改进?
AI大模型应用开发,常常是做出Demo容易,但在实际生产中落地很难。尤其是RAG框架下的应用。你的RAG效果为什么不好?怎么改进?一起来看一下。原创 2024-08-20 07:00:00 · 548 阅读 · 0 评论 -
【AI大模型应用开发】【提示词】别再自己死磕提示词优化了,这些方法让你事半功倍!
目前来说,在大模型应用开发过程中,最关键和起决定性作用的一个步骤还是给大模型写提示词(Prompt),一个好的提示词可以减少大模型的幻觉,提高大模型输出的稳定性,从而提高整个程序运行的正确性和可控性。但是想要写好提示词真的是太难了。本文将整理一下当下比较常用的提示词自动优化、甚至是直接帮你写提示词的一些思路和工具。原创 2024-08-13 07:00:00 · 597 阅读 · 0 评论 -
【AI大模型应用开发】【提示词工程】绝对靠谱的写 Prompt(提示词)的26条指导原则,都发论文了!
最近突然发现原来提示词Prompt的指导原则都已经被人总结出来,并发表了论文。既然发表了论文,说明他们已经用这些原则做过系统的验证了,所以这些原则是靠谱的,起码比网上的强。原创 2024-07-30 07:00:00 · 1400 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】实战案例:实现带@功能的群聊(附代码)
前两篇文章我们学习了AgentScope中的消息类封装和消息分发模块,本文我们来实战一下。本文利用AgentScope来实现一个带@功能的群聊。带@功能的群聊,其实是指定Agent进行发言,其中最重要的是消息的指定传递方向。原创 2024-07-26 07:00:00 · 1165 阅读 · 0 评论 -
【AI+搜索】开源AI搜索项目学习:400行核心代码完成整个流程
最近,我发现了一个开源的AI搜索工具,GitHub Star数7.5K,还挺受欢迎的。本文我们来看下它的具体实现,看下与我之前的思路有没有区别,有没有其它值得借鉴的地方。原创 2024-07-24 07:00:00 · 1022 阅读 · 0 评论 -
【AI大模型应用开发】阿里通义千问API如何使用?如何无缝兼容OpenAI?
前面文章中,我们有介绍过OpenAI API、百度文心一言API、智谱AI API、月之暗面Moonshot API的使用方法,今天这篇文章,我们再来学习下阿里通义千问API的使用方法。并且,在OpenAI API对中国地区封禁的背景下,我们也来看下通义千问API是否能够完全替代OpenAI API,实现无缝迁移。原创 2024-07-22 07:00:00 · 2142 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】详解AgentScope中的消息管理和分发模块(下)
对于多智能体框架来说,其中最重要的组件之一就是消息模块,这是多智能体间交互的通道。像LangGraph的State,MetaGPT的Environment、Message等,都是实现多智能体间消息传递的重要组件,本文我们来学习一下AgentScope框架中如何对这些消息进行分发。原创 2024-06-21 07:00:00 · 1464 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】详解AgentScope中的消息管理和分发模块(上)
对于多智能体框架来说,其中最重要的组件之一就是消息模块,这是多智能体间交互的通道。像LangGraph的State,MetaGPT的Environment、Message等,都是实现多智能体间消息传递的重要组件。本文我们来学习一下AgentScope框架中的消息模块。原创 2024-06-19 07:00:00 · 1240 阅读 · 0 评论 -
【AI赋能万物】一文综述:大模型在软件测试领域的探索
关注大模型在各个领域的应用,看大模型如何重构世界。本文以一篇论文,来看下大模型在软件测试行业的一些探索。这篇文论为我们提供了关于LLMs在软件测试中应用的全面回顾。这篇论文分析了102项相关研究,从软件测试和LLMs的角度进行了深入探讨。原创 2024-06-17 07:00:00 · 2385 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】AgentScope中的RAG实现思路(三)之 RAGAgent实现源码解读(可直接复用)
前面文章我们分别在AgentScope中用 LangChain 和 LlamaIndex 封装了RAG的流程,本文来学习下AgentScope中如何使用这个RAG的流程:实现一个 RAG Agent。以后如果需要,可以直接复用。原创 2024-06-16 07:00:00 · 1267 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】AgentScope中的RAG实现思路(二)之 LlamaIndexRAG
对于多智能体框架来说,RAG似乎并不是其框架内的内容,所以类似 AgentScope、LangGraph、MetaGPT 等框架,都没有提供特别明确的RAG实现流程。但RAG作为当前提高大模型能力、知识库问答等方向的主流方法,还是很重要的。所以这些框架也提供了实现RAG的一些示例。原创 2024-06-15 07:00:00 · 1253 阅读 · 0 评论 -
【AI Agent系列】【阿里AgentScope框架】AgentScope中的RAG实现思路(一)之 LangChainRAG
对于多智能体框架来说,RAG似乎并不是其框架内的内容,所以类似 AgentScope、LangGraph、MetaGPT 等框架,都没有提供特别明确的RAG实现流程。但RAG作为当前提高大模型能力、知识库问答等方向的主流方法,还是很重要的。所以这些框架也提供了实现RAG的一些示例。原创 2024-06-12 07:00:00 · 1256 阅读 · 0 评论 -
【阿里AgentScope框架】多框架组合:AgentScope加LangChain,让你的开发效率直线上升
本文以一个例子来看下AgentScope框架和LangChain如何实现融合使用,真的超级简单,一看就懂。这是一种思路,为多种框架的融合使用提供借鉴。原创 2024-06-10 07:00:00 · 2493 阅读 · 0 评论