给你一个整数数组 prices
,其中 prices[i]
表示某支股票第 i
天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
思路:贪心:只要买卖的利润为正就买卖,没有冷静期和手续费不需要考虑损失
class Solution:
def maxProfit(self, prices: List[int]) -> int:
result = 0
for i in range(1, len(prices)):
result += max(prices[i] - prices[i - 1], 0)
return result
给你一个非负整数数组 nums
,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true
;否则,返回 false
。
思路:跳几步不重要,重要的是可以跳几步,即覆盖范围,遍历覆盖范围内寻找下一步更远的覆盖范围,判断最终的覆盖范围能否覆盖终点即可。
class Solution:
def canJump(self, nums: List[int]) -> bool:
cover = 0
if len(nums) == 1: return True
i = 0
while i <= cover:
cover = max(i + nums[i], cover)
if cover >= len(nums) - 1: return True
i += 1
return False
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
思路:以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点。即遍历覆盖范围,如果遍历完毕后仍没有到达终点,则在记录下来的下一步的最大范围继续遍历
class Solution:
def jump(self, nums: List[int]) -> int:
cur_distance = 0 # 当前覆盖的最远距离下标
ans = 0 # 记录走的最大步数
next_distance = 0 # 下一步覆盖的最远距离下标
for i in range(len(nums) - 1): # 注意这里是小于len(nums) - 1,这是关键所在
next_distance = max(nums[i] + i, next_distance) # 更新下一步覆盖的最远距离下标
if i == cur_distance: # 遇到当前覆盖的最远距离下标
cur_distance = next_distance # 更新当前覆盖的最远距离下标
ans += 1
return ans