- 博客(66)
- 收藏
- 关注

原创 【时序预测】-Transformer系列
核心:Transformers的时序性较差,且embedding忽略变量间物理关联,而D-Linear(Decomposition-Linear),用于处理具有趋势和季节性模式的数据能够获得同样好的结果。核心:与Autoformer类似,在拆分趋势线和季节项的基础上,FEDformer使用傅里叶变换以及小波变换去加速attention模块。重点:Transformer + Patch(源于计算机视觉Vision Transformer)重点:Transformer + 趋势季节分解(基于频域)
2025-06-09 15:57:00
1080
原创 【Matplotlib】中文显示问题
本文总结了在Mac和Linux系统中解决Python绘图中文显示问题的方法。Mac用户可通过直接设置字体参数或下载字体文件实现中文显示;Linux系统需要额外配置,包括下载SimHei字体、修改matplotlibrc配置文件、清除缓存等步骤。文章还提供了设置不同字体大小的代码示例,并详细说明了字体文件存放路径和配置修改要点,为数据可视化中的中文显示问题提供了完整的解决方案。
2025-08-10 22:07:10
614
原创 【Pandas】常用数据处理技巧
本文总结了Python中Pandas库在数据处理与分析中的核心操作技巧,涵盖六个主要方面:1)数据读取与存储(CSV/Excel/JSON等格式的细节处理);2)数据增删改查(行列操作、条件筛选等);3)数据转换(透视表、分组聚合、行列转换);4)时间处理(日期转换、重采样、滑动窗口);5)数据可视化(基础绘图与高级图表设置);6)Excel集成(数据与图片混合导出)。重点突出了实际应用中的常见问题解决方案,如时间序列处理中的时区转换、多格式数据读取的性能优化、复杂数据结构的转换技巧等,并提供了可复用的代码
2025-08-10 22:03:23
792
原创 【Python】常用内置模块
本文整理了Python常用模块与操作技巧,包括:1. 文件操作(os模块):创建/删除目录、路径处理、文件判断等;2. 系统操作(sys模块):版本查询、路径添加;3. 时间处理(datetime/time):时间转换、格式处理;4. JSON处理:数据转换与文件读写;5. 正则表达式:常用语法与提取技巧;6. 日志记录(logging):级别设置与使用方法;7. 多进程/多线程/协程:应用场景与实现方式;8. 错误处理(traceback):异常信息打印;9. 全局变量管理:跨模块共享方案;等等
2025-08-10 21:59:21
983
原创 【MAC】个人常用快捷键
Mac浏览器标签切换与常用快捷键:Chrome用option+command+→/←切换标签,Safari用shift+command+→/←;cmd+数字键快速定位标签页。基础操作:cmd+w关闭标签,cmd+t新建标签,cmd+Tab切换应用。文本编辑:cmd+←/→跳转行首行尾。窗口管理:cmd+m最小化,cmd+h隐藏,四指上滑查看所有窗口。这些快捷键可提升Mac操作效率。
2025-08-05 08:15:00
265
原创 【Pycharm】初学者常用技巧
PyCharm实用技巧合集:1.代码差异对比(CompareWith功能);2.代码格式化(Reformatcode)可能产生多余换行;3.查看本地历史版本;4.分屏查看推荐竖屏;5.快速操作:开新行(⇧+Enter)、变量名大小写转换(⇧+⌘+U)、回退跳转(Ctrl+Alt+方向键);6.函数参数查看(⌘+P)、自动补全(⌘+⇧+↩);7.特殊注释:TODO标记待办事项,FIXME标记需修复bug;8.常见问题:修改文件名后需检查工作目录配置。
2025-08-05 08:00:00
443
原创 【量化交易】日内交易有效特征因子
在日内预测交易中,选择有效的特征因子是成功的关键。上述因子涵盖了技术指标、成交量、时间序列、市场情绪和宏观经济等多个维度,每个因子都有其独特的作用和适用场景。其核心思想是通过数据分析和统计建模,发现市场中的规律和模式,并以此为基础制定交易策略。本文将由浅入深地介绍量化交易的基本概念,并探讨在日内预测交易中可能有效的特征因子及其背后的逻辑。在日内交易中,选择有效的特征因子可以帮助我们更好地预测价格走势,从而制定盈利策略。日内交易是指在一个交易日内完成买入和卖出操作的交易方式。
2025-08-04 16:45:31
2128
原创 【排序】LightGBM Ranker的一些使用问题
使用: https://www.kaggle.com/code/bturan19/lightgbm-ranker-introduction/notebook。讨论label_gain的设置方法,可以单独设置,而且可以尝试以指数形式增长,如label_gain=[1, 2, 4, 8, 16]可以看出除了 Classifier 和 Regressor,就支持 Ranker,说明 Ranker 还是很重要和常用的。因此,一种评论解决方案,将最“糟糕”的文档标记为一个标签,例如。原因好像是复杂度非常高。
2025-08-03 09:14:39
431
原创 【量化交易】容易被忽略的细节:小问题可能引发大灾难
在实际操作中,许多看似微不足道的细节如果被忽略,可能会导致严重的后果,甚至让整个策略失效或造成重大损失。本文将从数据、模型、执行、风险管理等多个角度,深入探讨这些容易被忽视但至关重要的细节,并提出相应的解决方案。量化交易是一门融合了数学、统计学、计算机科学和金融学的多学科领域,其成功不仅依赖于复杂的算法和强大的计算能力,更需要对细节的高度关注。因此,无论是数据准备、模型构建、交易执行还是风险管理,都需要保持严谨的态度和全面的视角。记住,量化交易的核心不仅是“快”和“准”,更是“稳”。
2025-07-29 16:22:53
1301
原创 【对比】群体智能优化算法 vs 贝叶斯优化
(Bayesian Optimization, BO)是两种截然不同的优化范式,分别以不同的哲学和数学基础解决高维、非凸、多峰等问题。群体智能算法受自然界生物群体行为启发(如鸟群、鱼群、蚁群),通过多个个体的协作和竞争寻找最优解。在机器学习、工程优化和科学计算中,优化算法的选择直接影响问题求解的效率与效果。高维、黑箱、计算代价高的问题(如超参调优)的问题(如超参数调优)。,在有限的采样次数内高效逼近最优解。低(每次仅采样一个点,适合昂贵问题)多峰、非连续、约束优化(如工程设计)高(需维护种群,迭代次数多)
2025-07-25 16:29:58
913
原创 【区别】状态空间模型(SSM)和Transformer的核心区别
状态空间模型(SSM)和Transformer是两种主流的序列建模方法。SSM通过递归隐状态实现线性复杂度,适合长序列和实时处理,但依赖状态转移设计;而Transformer通过自注意力显式建模全局依赖,具有更强的语义交互能力,但计算复杂度为平方级。SSM参数高效,适合资源受限场景,而Transformer需大规模预训练。
2025-07-25 13:48:41
933
原创 【PyCharm】实用插件推荐
PyCharm高效开发必备插件推荐:1)RainbowBrackets彩色括号助力代码结构识别;2)Statistic实时统计项目指标;3)CSV插件优化表格数据处理;4)SonarLint实时检测代码问题;5)Markdown支持技术文档编写;6)Wakatime量化编程时间;7)LeetCode实现IDE内刷题。
2025-07-16 09:00:00
251
原创 【Python】定时器快速实现
本文介绍了Python实现定时任务的几种方法:1)内置time模块的sleep方法(存在时间漂移问题);2)自定义线程非阻塞方案;3)Twisted框架方案;4)schedule库(简单易用);5)APScheduler库(功能强大)。
2025-07-15 23:15:49
815
原创 【已解决】lxml.etree.ParserError: Document is empty
解决 lxml.etree.ParserError: Document is empty 错误的推荐方法是重新安装与Python版本兼容的 lxml
2025-06-18 15:34:30
707
原创 【异常】极端事件的概率衰减方式(指数&幂律衰减)
这篇文章的内容主要来源于这篇文章,给文章很详细的介绍了如何从windows下安装windows+ubuntu16.04双系统。我刚开始装双系统都是参照这个方法,该作者前后更新了两个版本,在这里对其稍微进行整理一下。一、准备:(这里推荐用u盘装系统,不推荐用硬盘方式装)(一)、准备工具: ➢U盘一个(请提前备份U盘里面的资料,因为后面操作要格式化U盘)
2025-06-17 14:51:07
6767
1
原创 【异常检测】极值理论(EVT)比正态分布好在哪?
极值理论(EVT)与正态分布在计算概率时的核心区别在于,EVT专注于建模极端值(尾部事件)的分布特性,而正态分布更适合描述“典型”数据的集中趋势。
2025-05-23 14:07:18
967
原创 【强化学习】PPO如何根据奖励模型调整模型参数
好的,我现在需要帮助用户理解PPO强化学习中奖励模型如何评价语言模型的输出,并将评价结果返回给语言模型进行更新。用户的问题集中在“返回什么”和“如何利用分数更新模型”这两个方面。首先,我得回顾一下PPO的基本概念。PPO(Proximal Policy Optimization)是一种强化学习算法,用于训练策略模型。在监督学习中,数据有明确的标签,而强化学习中没有,而是通过奖励信号来指导模型调整策略。用户提到语言模型接受prompt作为输入,生成输出,然后奖励模型评估这个输出,将评价返回给语言模型。
2025-05-21 17:11:48
1276
原创 scikit-learn 线性回归算法库小结
本文内容主要来自这篇文章。scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景。 线性回归的目的是要得到输出向量YY和输入特征XX之间的线性关系,求出线性回归系数θθ,也就是Y=XθY=Xθ。其中YY的维度为mx1,XX的维度为mxn,而θθ的维度为nx1
2025-05-21 15:28:59
1434
1
原创 【对比】快速理解BLEU和ROUGE区别
ROUGE-2和BLEU-2指标差异分析:ROUGE-2基于召回率,衡量生成文本覆盖参考n-gram的比例,冗余内容会提高得分;BLEU-2基于精确率,评估生成内容与参考的匹配精度,冗余会降低得分。
2025-05-21 15:27:25
522
原创 大语言模型训练数据格式:Alpaca 和 ShareGPT
在大规模语言模型(LLM)的开发中,训练数据的质量和格式起着至关重要的作用。为了更好地理解和构建高质量的数据集,社区发展出了多种标准化的数据格式。其中,Alpaca 和 ShareGPT 是两种广泛使用的训练数据格式,它们分别适用于不同的应用场景,并在指令微调、对话建模等领域发挥了重要作用。
2025-05-19 17:18:42
6254
1
原创 大模型部署到本地就是私有化部署吗?
大模型私有化的定义需要从部署方式和数据/模型控制权两个维度来理解,不能简单地仅以“部署位置”或“数据训练”单一条件判断。
2025-04-22 15:22:46
861
原创 【已解决】Git:为什么 .gitignore 不生效?如何停止跟踪已提交文件并阻止推送?
通过此方法,你可以灵活管理本地文件与远程仓库的关系,避免误操作导致敏感数据或大文件泄漏到仓库中。
2025-03-27 11:44:31
1122
原创 【Titans】为什么不直接用预测误差,而是使用梯度的变化来衡量惊奇度?
Titans 论文选择使用梯度变化而非预测误差来衡量“惊奇度”,主要是因为梯度变化能够捕捉模型对输入的全局敏感性和动态响应,而不仅仅是局部的预测性能。这种方法在在线学习、强化学习等需要动态调整记忆的场景中尤为有用。然而,梯度变化也有其局限性,例如计算开销和解释性不足。因此,在实际应用中,是否使用梯度变化作为“惊奇度”指标需要根据具体任务和模型架构进行权衡。
2025-03-11 17:01:11
904
原创 【RNN】什么是线性RNN?
线性RNN是一种简化的RNN模型,其隐藏状态和输出完全基于线性变换。由于缺乏非线性激活函数,线性RNN的表达能力有限,主要用于理论研究和简单任务。然而,它在理解RNN的基本原理、分析长期依赖问题以及作为基线模型等方面具有重要意义。对于实际应用中的复杂序列建模任务,通常需要使用标准RNN或其改进版本(如LSTM、GRU)。
2025-03-11 15:41:26
1288
原创 【Transformer优化】Transformer的局限在哪?
当我们审视Transformer的缺陷时,不应简单归咎于"复杂度高"的片面标签,而应深入其数学本质与计算特性,在理解其局限的基础上突破前进。正如Vaswani在原论文中坦言:“我们的方法并不是万灵丹”,正视这些缺陷,或许我们才能真正站在Transformer的肩上,望向更远的未来。
2025-03-09 23:33:32
1477
原创 【时间序列】Patch:到底是什么?
时间序列的“Patch化”不仅是一种技术改进,更是认知范式的转变——它摒弃了逐点分析的原子视角,转而通过局部片段间的相互作用重建全局动态。
2025-03-09 23:14:01
1888
原创 【时间序列】因果推断:从时序数据中探寻“因”与“果”
时间序列因果推断是一种分析方法,旨在研究时间序列数据中的变量之间是否存在因果关系,以及这种关系的方向性。A的变化是否导致了B的变化?如果A发生变化,B会如何响应?时间序列因果推断是一项强大的工具,它让我们能够从动态变化的数据中挖掘出真实的因果关系。
2025-03-07 23:34:07
2091
原创 【时间序列聚类】从数据中发现隐藏的模式
简单来说,时间序列聚类是一种将相似的时间序列归为一类的技术。它的核心目标是找到具有相似模式或行为的时间序列,并将它们分组。
2025-03-07 23:26:38
1170
原创 【时序预测】时间序列有哪些鲁棒的归一化方法
时间序列数据的归一化是一个关键但复杂的预处理步骤。传统方法如最小-最大归一化和Z-Score标准化虽然简单易用,但在面对异常值和非平稳性时表现不佳。相比之下,基于分位数的归一化、滑动窗口归一化、MAD以及自适应归一化等方法更具鲁棒性,能够有效应对时间序列数据的挑战。在实际应用中,建议根据数据特性和任务需求灵活选择归一化方法,并通过实验验证其效果。希望本文能为读者提供启发,帮助大家更好地处理时间序列数据!
2025-03-04 23:34:27
1496
原创 【Transformer优化】什么是稀疏注意力?
稀疏注意力是一种对传统自注意力机制的优化方法,其核心思想是通过限制注意力范围,减少需要计算的注意力权重数量,从而降低计算复杂度。换句话说,稀疏注意力只允许模型关注输入序列中的一部分元素,而不是所有元素。稀疏注意力作为一种优化 Transformer 的关键技术,通过减少计算和内存开销,为大规模模型的应用铺平了道路。它的出现不仅解决了传统自注意力机制的效率瓶颈,还为模型设计提供了新的思路。对于研究者和工程师而言,稀疏注意力的意义在于提醒我们:在追求模型性能的同时,也需要关注其效率和可扩展性。
2025-03-04 12:25:43
2430
原创 【深度学习】Hopfield网络:模拟联想记忆
Hopfield网络是一种经典的循环神经网络,由物理学家John Hopfield在1982年提出。想象你看到一张模糊的老照片,虽然细节不清,但大脑能自动“补全”图像细节。,类似于人类大脑通过部分信息回忆完整记忆的能力。
2025-03-02 18:39:32
1142
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人