Pandas常用基本操作(整理)

 
 
一、查看数据(查看对象的方法对于Series来说同样适用)

1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行数据,若head()中不带参数则会显示前5行数据。 a.tail(6)表示显示后6行数据,若tail()中不带参数则会显示后5行数据。

2.查看DataFrame的index,columns以及values a.index ; a.columns ; a.values 即可

3.describe()函数对于数据的快速统计汇总 a.describe()对每一列数据进行统计,包括计数,均值,std,各个分位数等。

4.对数据的转置 a.T

5.对轴进行排序 a.sort_index(axis=1,ascending=False); 其中axis=1表示对所有的columns进行排序,下面的数也跟着发生移动。后面的ascending=False表示按降序排列,参数缺失时默认升序。

6.对DataFrame中的值排序 a.sort(columns='x') 即对a中的x这一列,从小到大进行排序。注意仅仅是x这一列,而上面的按轴进行排序时会对所有的columns进行操作。

二、选择对象

1.选择特定列和行的数据 a['x'] 那么将会返回columns为x的列,注意这种方式一次只能返回一个列。a.x与a['x']意思一样。

取行数据,通过切片[]来选择 如:a[0:3] 则会返回前三行的数据。

2.loc是通过标签来选择数据 a.loc['one']则会默认表示选取行为'one'的行;

a.loc[:,['a','b'] ] 表示选取所有的行以及columns为a,b的列;

a.loc[['one','two'],['a','b']] 表示选取'one'和'two'这两行以及columns为a,b的列;

a.loc['one','a']与a.loc[['one'],['a']]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。

3.iloc则是直接通过位置来选择数据 这与通过标签选择类似 a.iloc[1:2,1:2] 则会显示第一行第一列的数据;(切片后面的值取不到)

a.iloc[1:2] 即后面表示列的值没有时,默认选取行位置为1的数据;

a.iloc[[0,2],[1,2]] 即可以自由选取行位置,和列位置对应的数据。

4.使用条件来选择 使用单独的列来选择数据 a[a.c>0] 表示选择c列中大于0的数据

使用where来选择数据 a[a>0] 表直接选择a中所有大于0的数据

使用isin()选出特定列中包含特定值的行 a1=a.copy() a1[a1['one'].isin(['2','3'])] 表显示满足条件:列one中的值包含'2','3'的所有行。

三、设置值(赋值)

赋值操作在上述选择操作的基础上直接赋值即可。 例a.loc[:,['a','c']]=9 即将a和c列的所有行中的值设置为9 a.iloc[:,[1,3]]=9 也表示将a和c列的所有行中的值设置为9

同时也依然可以用条件来直接赋值 a[a>0]=-a 表示将a中所有大于0的数转化为负值

四、缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。

1.reindex()方法 用来对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝。 a.reindex(index=list(a.index)+['five'],columns=list(a.columns)+['d'])

a.reindex(index=['one','five'],columns=list(a.columns)+['d'])

即用index=[]表示对index进行操作,columns表对列进行操作。

** 2.对缺失值进行填充** a.fillna(value=x) 表示用值为x的数来对缺失值进行填充

** 3.去掉包含缺失值的行** a.dropna(how='any') 表示去掉所有包含缺失值的行

五、合并

1.contact contact(a1,axis=0/1,keys=['xx','xx','xx',...]),其中a1表示要进行进行连接的列表数据,axis=1时表横着对数据进行连接。axis=0或不指定时,表将数据竖着进行连接。a1中要连接的数据有几个则对应几个keys,设置keys是为了在数据连接以后区分每一个原始a1中的数据。

例:a1=[b['a'],b['c']] result=pd.concat(a1,axis=1,keys=['1','2'])

2.Append 将一行或多行数据连接到一个DataFrame上 a.append(a[2:],ignore_index=True) 表示将a中的第三行以后的数据全部添加到a中,若不指定ignore_index参数,则会把添加的数据的index保留下来,若ignore_index=Ture则会对所有的行重新自动建立索引。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值