小波神经网络MATLAB程序

这篇博客介绍了一个使用MATLAB实现小波神经网络的示例。通过初始化数据、设置网络参数,利用Morlet小波函数计算隐藏层输出,并通过梯度下降法更新权重,以实现网络的训练。博客详细展示了网络结构、输入输出处理和误差计算过程。
摘要由CSDN通过智能技术生成

clear all
%initiate of data
 P=3 %numberof sample
 m=1%number of input node
 n=10%number of hidden node
 N=1%number of ouptut node
 %
 %a(n) b(n) scale and shifting parameter matrix
 %x(P,m) input matrix of P sample
 %net(P,n) ouput of hidden node
 %y(P,N) output of network
 %d(P,N) ideal output of network
 % phi(P,n) ouput of hidden node wavelet funciton
 %W(N,n)weight value between ouput and hidden
 %WW(n,m) weight value between  hidden and input node
x=[4;5;6]
d=[1.3;3.6;6.7]
W=rand(N,n)
WW=rand(n,m)
a=ones(1,n)
for j=1:n
b(j)=j*P/n;
end
 %%%%%%%%%%%%%%%%%%
 %EW(N,n) gradient of W
 %EWW(n,m) gradient of WW
 %Ea(n) gradient of a
 %Eb(n) gradient of b
 %%%%%%%%%%%%%%]
 epoch=1;
 epo=100;
 error=0.05;
 err=0.01;
 delta =1;
 lin=0.5;
 while (er

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值