clear all
%initiate of data
P=3 %numberof sample
m=1%number of input node
n=10%number of hidden node
N=1%number of ouptut node
%
%a(n) b(n) scale and shifting parameter matrix
%x(P,m) input matrix of P sample
%net(P,n) ouput of hidden node
%y(P,N) output of network
%d(P,N) ideal output of network
% phi(P,n) ouput of hidden node wavelet funciton
%W(N,n)weight value between ouput and hidden
%WW(n,m) weight value between hidden and input node
x=[4;5;6]
d=[1.3;3.6;6.7]
W=rand(N,n)
WW=rand(n,m)
a=ones(1,n)
for j=1:n
b(j)=j*P/n;
end
%%%%%%%%%%%%%%%%%%
%EW(N,n) gradient of W
%EWW(n,m) gradient of WW
%Ea(n) gradient of a
%Eb(n) gradient of b
%%%%%%%%%%%%%%]
epoch=1;
epo=100;
error=0.05;
err=0.01;
delta =1;
lin=0.5;
while (er
小波神经网络MATLAB程序
最新推荐文章于 2024-11-20 09:21:10 发布
