相对论通俗演义(1-10) 第七章

第七章 微分几何杂谈
(1)
据说几何学起源于丈量大地,微分几何学里有一个词语,"测地线",测地线在黎曼几何中是是2点之间最短的线,但时空具有非正定的号差,是伪黎曼几何,或者说是lorentz几何,所以,测地线是时空2点之间最长的类时线。当一开始,古代的人们发明平面几何的时候,也同时撞见一些问题,比如,能不能把用尺规作图把一块圆的土地等面积地变换成一个正方形的土地,化圆为方一直困绕着古代数学家,后来这个问题被证明是不能实现的。另外一个问题是这样的,给你一根长度一定的绳子,叫你去圈一块土地,怎么样子圈地,才能够得到最大面积,这就是等周问题。如果这条曲线不是平面曲线,这个等周问题更加复杂,所谓Plateau问题或者极小曲面问题,其实就是一个非线性偏微分方程。等周问题和最速降线问题一样,促使变分方法的诞生,在物理学上,这就是人们津津乐道的真理之一,“对作用量变分为零得到Euler-lagrange方程”。因此,几何学的这些问题非常朴素,但背后包含了巨大的玄机,其中lagrange的分析力学的思想,区别与牛顿,lagrange曾经写了一本书,这本书是讲力学的,但全书没有一个图,lagrange非常自豪。
古代的人不知道大地其实是一个2维球面。后来,航海家麦哲伦环球航行,他是一个无比成功的冒险大王,他当然知道,假如大地是一个正方形,那么,可能有一天,他麦哲伦会走到大地的尽头,然后扑通一下掉进无底的深渊。历史总是垂青少数幸运的青年,后来,麦哲伦成功地回到了原来的出发点,大家才知道,原来真相只有一个,是这样的:我们居住在一个球面之上。但如若事后诸葛,仔细看一下,人类的武断似乎让人苦笑,其实,麦哲伦能够环球航行,不足以证明大地是一个球面,因为,还有其他的可能,比如环面,柱面,Mobius带,Klein瓶。其实要发现大地是一个球面,是一件很麻烦的事情。我们可能不得不站在高处,比如卫星之上,向下俯瞰,才能得到一个初步的结论,这是一种把流形嵌入在高维空间的方法。
2维球面具有很多性质,在拓扑的意义上,它的欧拉数为2。在几何上,它可以是最大对称空间,处处具有同样的曲率。在纤维丛上,2球面上的2形式张量场不可能整体是恰当的,也就是不可能存在单一的电磁势A使得处处满足F=dA,这就是poincare引理,于是我们得到chern示性类。
在19世纪末,美丽法国的小城南锡。poincare小的时候,就是高度近视眼。所以他上课全靠听力。由于运动神经的不协调他从小就不能与小伙伴一起玩,童年非常之不幸。在数学上,他后来做出了伟大的贡献。懂数学的全知道,在三维空间,标量场的梯度取旋度为0,矢量场的旋度的散度为0,这其实可以用外微分的语言表达为poincare引理。
poincare引理认为,假如流形可缩为一点,假如它上面的一个微分形式是恰当的,那么它必定是闭的。这个断言非常之强,可算是当时数学上的颠峰之作。poincare是数学物理的最后一个全才,他研究3体问题,在这个问题上,有一个poincare-birkhoff定律,这个定理是关于不动点问题的,据说在保面积映射中,如果出现在相空间的环面上的两个周期P,Q的比例是有理数,那么上面的流转过有限周以后必定回到原来的点,如果用poincare截面来描述的话就是在poincare截面上出现了点的回复,从而实际的映射点是离散分布在圆周上的有限点。poincare于1912年猜测,这种情形下的映射有2kQ个不动点,一半稳定,一半不稳定,这被称为"poincare最后猜想",在Harvard大学的Birkhoff证明了这个猜想,声名鹊起。这一映射模型是poincare在研究限制性三体运动中抽象出来的数学模型,如果在相空间的环面上的两个周期P,Q的比例是无理数(不是有理数),那么环面上的流就是拟周期运动,永远无法在poincare截面上出现点的回复,从而实际的映射点是连续分布在圆周上的无限多个点,这个情形就要用Moser定理来解决。现时代要培养全才,已经没有可能,因为pioncare是断后的那一个人。
poincare与klein研究3维的空间。这个3维的空间是深山老林,很少有人能进去以后不迷路。这个Felix·klein是德国人,因为研究瓶子而闻名世界。说到klein瓶已经高度抽象,它是2个mobius带子粘起来的结果,但它不能在3维空间中被粘起来。poincare的问题是是不是任何3维的流形都同胚于3维球面?这个问题成为亘古难解的poincare猜想。Yau.s.t认为人类连poincare猜想也搞不清楚,那就是连司空见惯的3维空间也没有真正研究好。可是,历史总是猛烈发展,相对论已经在另外一个来自瑞典的物理学家Oscar·klein启蒙下进入高维度研究。这个启蒙运动叫做“卡鲁扎——klein理论”。
(2)
微分几何大致分为三种,黎曼几何,辛几何,复几何。这是根据微分流形上的度量来分类的。在相对论看来,黎曼几何不是最好的,最好的是伪黎曼几何,上面有因果结构;辛几何是有用的,但可是描述哈密顿系统,现在最流行的圈量子引力,就是从哈密顿系统里开始做量子化的;复几何与彭罗斯一直推销的扭量理论相关。陈省身考虑了复示性类,明显区别与庞德里亚金和惠特尼的示性类不同,但取得最大的成就。因为复数比实数要优越,要自然,正如任何多项式方程在复数范围里全有解。
杨振宁写了一首诗歌,来赞美陈示性类。
"天衣岂无缝,匠心剪接成。浑然归一体,广邃妙绝伦。造化爱几何,四力纤维能。千古寸心事,欧高黎嘉陈。”
最后一句,欧高黎嘉陈。这一句话里面,包含五位杰出的几何学家。按照我第一次读到这个诗歌的经历,我有点吃不准,那个欧字,是欧拉还是欧几里得,欧拉在几何学上的贡献我不是很清楚,因此是欧几里得。欧拉是18世纪的数学巨匠,据说在他临死之前,他说了一句话:"我死了"。说完他就死去,很是神奇。数学大家的情操,表露无疑。欧拉生前,是处理无穷级数求和的专家,自然数倒数的平方和是一个难题,当时欧拉的老师John.伯努利也弄不出来,但欧拉算出来了,答案是pi的平方除以6。其证明过程相当于把n次多项式方程里的韦达定理推到n等于无穷。
高斯从小就是是一个神童,他10来岁的时候就会做等差数列求和,1加到100等于5050。这个故事现在家喻户晓,不少家庭用这个来检验自己家的小孩子是不是有数学天分。他青年的时候做17等分圆周的时候,后来就完整地研究了曲面和曲线,还得到很多重要的微分几何里的定理,其中一个叫"高斯绝妙定理",这个定理说明2维曲面的黎曼内禀曲率与外部空间无关。
黎曼1854年的那个著名演讲的题目是《几何学基础之假设》,微分几何学开始研究内禀曲率。
嘉当是法国数学家,是陈省身的导师。
陈省身是中国数学家,2004年12月在南开大学去世,标志一个数学时代的结束。丘成桐先生题写挽联寄托对陈省身老师的哀思。

呜呼,大厦倾矣,二千年勾弦求根,割园三角,终不抵陈氏造类, 孤学西传,置几
何于大观,扬华夏于世界。
哀哉,哲人萎乎,卅五载提携攻错,赏誉四方,犹未忘柏城授业,中土东归,传算学
之薪火,立科学之根基。

弟子  成桐  敬挽
2004年12月4日”

(3)
陈省身年轻的时候,推广了微分几何学上很重要的Guass-bonnet公式。Guass-bonnet公式具有非凡的影响,因为它联系了局部几何性质与整体拓扑性质,把看上去很不显然的两个东西联系在一起了,数学的统一性,变的非常明显。

他在1980年访问中国科学院理论物理研究所,写了一个诗歌,表达了更深的意思,数学和物理,具有统一性。这个诗歌高屋建瓴,人间难得几回闻:

  “物理几何是一家,共同携手到天涯。黑洞单极穷奥秘,纤维联络织锦霞。进化方程孤立异,对偶曲率瞬息差。筹算竟有天人用,拈花一笑不言中。 ”

早期的相对论,因为没有用到整体微分几何,数学看上去有一些麻烦,数学技巧也显得不是很高,Hawking写道,费曼曾经描述过1962
年的一次华沙召开的引力会议,对当时的相对论研究者的低能表示了一定的轻视,到了1960年代,彭罗斯(R.Penrose
)用整体微分几何证明了相对论里面的第一个奇性定理,结果开创了新的局面。penrose还大刀阔斧地在广义相对论中引进了旋量。就我自己的认识来说,dirac方程的解就是一种旋量。但在4维空间,最小的旋量是2维的,这就是不带质量的中微子,用weyl方程描述。对于最小的旋量,推广地说,如果n为偶数,n维时空之上,p=n/2-1,则,最小的旋量维数是2的p次方。如果n为奇数,n维时空之上,则p=n/2-1/2,最小的旋量维数是2的p次方。在任意n维矢量空间,给定任意号差的黎曼度量,全可以定义旋量。但在流形上整体定义旋量场,却要考虑到流形的整体拓扑性质。而最近很热的扭量,其实就是一对旋量,满足一个约束方程。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值